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EMBARCADERO TECHNOLOGIES, INC. 

Opposer

v.

RSTUDIO, INC.

  Applicant.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD

Opposition No.: 91-193,335

  Trademarks: RSTUDIO

 Serial Nos.:  77/691,980

 77/691,984

 77/691,987

OPPOSER’S NOTICE OF RELIANCE - REBUTTAL

Pursuant to Trademark Rule 2.122(e) Opposer, EMBARCADERO TECHNOLOGIES, INC.,

(“Embarcadero”, or “Opposer”), by its attorneys, hereby gives notice that it will or may rely on the

following materials relevant to the issues in the captioned proceeding, copies of which are attached

to the Notice. All of the following materials are specifically entered into the record in order to rebut

testimony and evidence submitted by Applicant during their testimony period.

The Notice of Reliance is being submitted prior to the close of Opposer’s Rebuttal

Testimony Period, pursuant to the Trademark Trial and Appeal Board Manual of Procedure (TBMP)

§ 702.02, See Sports Authority Michigan Inc. v. PC Authority Inc., 63 USPQ2d 1782, 1786 n.4

(TTAB 2001) (notices of reliance must be filed before closing date of party's testimony period).

1. RStudio Inc.’s current website as of May 25 2011, attached hereto as Exhibit A to show the

manner in which Applicant has altered the site since their testimony period, and to show the

manner in which Application is currently using and/or referencing to its RSTUDIO marks.

2. Working Paper No. 15 from the Meeting of the Management of Statistical Information

Systems titled “R: An Open Source Statistical Environment Invited Paper” prepared by

Valentin Todorov, UNIDO, dated March 28, 2008, available at:
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http://www.unece.org/stats/documents/ece/ces/ge.50/2008/wp.15.e.pdf, attached hereto as

Exhibit B.  The Working Paper shows the connectivity between the R computing language

and relational databases as well as shows that statistical systems are never used in isolation,

but rather must communicate with other systems.

3. The online book “Using R for Actuarial Science” by Shyamal Kumar, dated March 5, 2007,

available at: www.soa.org/files/pdf/UsingRforActuarialScience.pdf, attached hereto as

Exhibit C.  The online book shows the connectivity between the R computing language and

relational databases.

4. The online article “Scenarios for Using R within a Relational Database Management System

Server” by Duncan Temple Lang, dated April 12, 2001, available at:

www.omegahat.org/RSPostgres/Scenarios.pdf, attached hereto as Exhibit D. The article

shows the connectivity between the R computing language and relational databases.

5. Excerpts from the online manual “R Data Import/Export” edited by the R Development Core

Team at the Comprehensive R Archive Network (CRAN), Version 2.13.0, dated April 13,

2011, available at: http://cran.r-project.org/doc/manuals/R-data.pdf, attached hereto as

Exhibit E.  This manual shows how the R language is well adapted to work with relational

databases, such as ER/Studio.

6. The article “Improving the analysis, storage and sharing of neuroimaging data using

relational databases and distributing computing”, by Uri Hasson, et al, published in

NeuroImage, a Journal of Brain Function, Volume 39, Issue 2, 15 January 2008, Pages 693-

706, available at: http://www.behaviometrix.com/public_html/Hasson07.distrib.analysis.pdf,

attached hereto as Exhibit F.  This article shows how the R language is well suited to

conduct analysis on relational databases 
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7. Portions of Embarcadero’s current website as of May 6, 2011, as well as excerpts from

various ER/Studio user guides, attached hereto as Exhibit G to show the relationship,

interface, and/or interoperability between the ER/Studio product line and flat file or non-

relational databases.

Dated: May 30, 2011 Respectfully Submitted,

EMBARCADERO TECHNOLOGIES, INC.

By /Martin R. Greenstein/

Martin R. Greenstein

Mariela P. Vidolova

Leah Z. Halpert

TechMark a Law Corporation

4820 Harwood Road, 2nd Floor

San Jose, CA 95124-5273

Tel: (408) 266-4700; Fax: (408) 850-1955

E-Mail: MRG@TechMark.com

Attorneys for Opposer

CERTIFICATE OF SERVICE

I hereby certify that a true and correct copy of the foregoing OPPOSER’S NOTICE OF

RELIANCE - REBUTTAL is being served on May 30, 2011, by first class mail, postage prepaid

on Applicant’s Attorney of Record at his address below:

Charles E. Weinstein, Esq.

Julia Huston

Joshua S. Jarvis

Anthony E. Rufo

FOLEY HOAG LLP

155 Seaport Blvd, Ste 1600

Boston, MA 02210-2600

Tel: (617) 832-1000

E-Mail: CEW@foleyhoag.com

/Leah Z Halpert/

Leah Z Halpert
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 Working Paper No. 15 
28 March 2008 
 
ENGLISH ONLY 
 

UNITED NATIONS STATISTICAL COMMISSION and 
ECONOMIC COMMISSION FOR EUROPE 
CONFERENCE OF EUROPEAN STATISTICIANS 
 

EUROPEAN COMMISSION 
STATISTICAL OFFICE OF THE 
EUROPEAN COMMUNITIES (EUROSTAT) 
 

   ORGANISATION FOR ECONOMIC COOPERATION
AND DEVELOPMENT (OECD) 
STATISTICS DIRECTORATE 
 

  

Meeting on the Management of Statistical Information Systems (MSIS 2008) 
(Luxembourg, 7-9 April 2008) 
 
Topic (iii): Exchange/sharing/re-use of components, common models among statistical offices 
 

R: An Open Source Statistical Environment 
 

Invited Paper 
 

Prepared by Valentin Todorov, UNIDO 
 

I. INTRODUCTION 
 

1. The Open Source movement has changed dramatically the global software landscape in the recent 
decades. If we look at any software area we will find prominent representatives of the Open Source 
Software/Free Software (OSS/FS, also abbreviated as FLOSS/FOSS) like Linux, Apache, MySql, 
Perl, PHP, OpenOffice, Mozilla Firefox. The exact definition of what Open Source is and what it is 
not can be found at the home page of the Open Source Initiative, but briefly speaking, programs 
developed as OSS/FS are programs with a licenses giving the users the freedom to redistribute them 
in any form, to use them for any purpose, to have access to the complete source and have the 
freedom to modify it and to redistribute the modified programs, of course without having to pay any 
royalties to the original developers. An extensive quantitative evaluation of the Open Source 
approach can be found in Wheeler (2007). 

 
2. In the world of commercial statistical software there are only a few very well known names that 

dominate - SAS, SPSS, STATA, S-PLUS, MATLAB. The situation with the free software is 
similar. Although there are hundreds and hundreds of free tools for solving a given statistical 
problems, if we talk about a comprehensive statistical environment which could be competitive to 
the dominating commercial packages, the choice is not much and we end always with R. 

 
3. The goal of this paper is to present a brief overview of the Open Source statistical language and 

environment R, pointing out its advantages (and disadvantages) when compared to the commercial 
statistical packages dominating the market for statistical software. Since nowadays it is very easy to 
find any information (useful or not) in Internet, not many references are included and the included 
ones are either those that I have used for the preparation of this material or such that are not easy to 
find.  
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II. WHAT IS R 
 

A. The R Platform 
3. As described by the R-core development team on its web page, R is “a system for statistical 

computation and graphics. It provides, among other things, a programming language, high-level 
graphics, interfaces to other languages and debugging facilities.” 

 
4. R is a GNU project, which was developed after and can be considered a different 

implementation of the S language and environment, with similar syntax and features. The S 
language was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by 
John Chambers and colleagues in the mid-seventies. One of the big names in the world of the 
commercial statistical software is S-Plus, which is a value added implementation of the S 
language and now is marketed by Insightful Corporation. Despite the very close similarities with 
S and the superficial similarities with the C language, actually the R engine is significantly 
influenced by Scheme, a Lisp dialect. Nevertheless, much code written for S runs unaltered 
under R. 

 
5. The development of the R language and environment first started in 1990 as an experimental 

project by Ihaka and Gentleman, both from the laboratory of statistics at the University of 
Auckland (New Zealand), in 1993 a preliminary version of R was presented and already in 1995 
R was released under the GNU Public License. Now the development of R is managed by the R-
core team consisting of 17 members including John Chambers. 

 
6. R provides a wide variety of statistical (linear and non-linear modelling, classical statistical 

tests, time-series analysis, classification, clustering, robust methods and many more) and 
graphical techniques.  

 
7. A general collection of useful information for users on all platforms (Linux, Mac, Unix, 

Windows) can be found in R FAQ. Additionally there are two platform-specific FAQs for 
Windows and MacOS. 

 
B. R Availability 

 
8. R is available as Free Software under the terms of the Free Software Foundation's GNU General 

Public License in source code form.  
 

9. R can be obtained as both source and binary (executable) forms from the Comprehensive R 
Archive Network (CRAN). The source files are available for a wide variety of UNIX platforms 
and similar systems (including FreeBSD and Linux) as well as for Windows and MacOS for 
which are available also precompiled binary distributions of the base system and contributed 
packages.  

 
10. The most recent release of R is version 2.6.2 (released on 8.February 2008) and pre-release 

versions of 2.7.0 are in progress. 
 

11. A wide variety of add-on functionality (actually the normal way of extending R) is available 
from the same web page in the form of contributed R packages, which can be downloaded in 
source form or installed directly from the R console by using the install.packages() function 
(provided the computer is connected to the Internet). 

 
C. Is R harder to learn/use than other statistical packages? 

 
12. One of most popular criticisms against R is that this statistical language is hard to learn, 

compared to the other statistical packages, like SAS and SPSS and it is said to have a very steep 
learning curve. Quoting Kabacoff (2008) ”I have been a hardcore SAS and SPSS programmer 
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for more than 25 years, a Systat programmer for 15 years and a Stata programmer for 2 years. 
But when I started learning R recently, I found it frustratingly difficult”. On the other hand, I 
have not used SAS for 25 years, but I have programmed in C as long, I have not used Systat or 
Stata for many years, but I have programmed in Fortran, Java, C# and many other (non 
statistical) programming languages. And for me R was not harder to learn than any of these (non 
statistical) languages. 

 
13. As mentioned in Muenchen (2007), while SAS and SPSS have a wide variety of functions and 

procedures, all these fall into one of five categories and these are: 
(a) Data input and management statements for reading, transforming and organizing the data 
(b) Statistical and graphical procedures for analysing the data 
(c) An output management system for formatting the output from statistical procedures or for 

customizing printed output. In SAS this is done by the Output Delivery System (ODS) while 
in SPSS it is done by the Output Management System (OMS). 

(d) A macro language to allow creating of programs, i.e. repeatedly executing statements, 
functions and procedures 

(e) A matrix language for creating new algorithms. This language is SAS/IML in SAS and 
SPSS Matrix in SPSS. 

 
14. In SAS and SPSS these five areas are handled with different systems, but for the sake of 

simplicity the introductory training in these packages  involves mainly the first two (data 
management, statistical analysis and graphics) and many of the users stay with this knowledge 
and never learn the more advanced topics. On the other hand, in R all these five areas are 
interrelated in such a way that the user must approach them in parallel, which could be difficult 
for the novice. But the integration of these five areas gives R a significant advantage in power 
which allowed most of the R procedures to be written in the same interpreted language and thus 
the source code of these procedures is available for viewing and modifying by the user. 

 
D. R Graphics 

 
15. One of the most important strengths of R is the ease with which simple exploratory graphics as 

well as well-designed publication-quality plots can be produced, including mathematical 
symbols and formulae where needed. Great care has been taken over the defaults for the minor 
design choices in graphics, but the user retains full control.  

 
16. A simple example of basic R graphics is shown in Figure 1 (produced by the code below) while 

Figure 2 shows a trellis-type graphic (to my knowledge this type of graphics are not available in 
most of the other statistical packages). Finally, Figure 3 shows an example of time series 
diagnostic graphics. 

 
daten <- faithful[faithful$eruptions > 3, 2] 
par(mfrow = c(2, 2)) 
hist(daten, freq = FALSE, breaks = 20, xlim = c(60,100)) 
boxplot(daten, main = "Boxplot") 
plot(density(daten), main = "Estimated Density") 
qqnorm(daten) 
qqline(daten, col = "red") 
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Figure 1:A simple example of R basic graphics  
 

17. R can produce graphics in many formats, including: 
(a) On screen  
(b) PDF files for including in LATEX or for direct distribution 
(c) PNG or JPEG bitmap formats for the WEB  
(d) On Windows, metafiles for Word, PowerPoint, and similar programs 

 
18. An exciting example of the R graphics capabilities is the R Graph Gallery which aims to present 

many different graphics fully created with the programming environment R. Graphs are 
gathered in a MySQL database and browsable through PHP. An excellent reference to R 
Graphics is the book of Paul Murrell, a member of the R Core Development Team who has not 
only been the main author of the grid package but has also been responsible for several recent 
enhancements to the underlying R graphics engine. 
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Figure 2:An example of multipanel graphic display (trellis graphics) in R 
 

E. R Extensibility (R Packages) 
 

19. One of the most important features of the R language and one of the main topics in which R 
beats the commercial version S-Plus, is its extensibility by creating packages of functions and 
data. This was one of the key features that has contributed to the R’s growth. The first step in R 
programming is writing R functions for performing a given repetitive action. Next, to facilitate 
the reusability of such functions they can be combined into a package.  

 
20. The R package mechanism was first designed to help the developers to encapsulate related 

programs, data and documentation and distribute them to the users. Now this mechanism is the 
natural way of extending R. Numerous researchers create R packages and post them on the 
special area of the Comprehensive R Archive Network (CRAN). The R environment provides 
tools for downloading and installing packages, for creating packages from scratch and extending 
them, for writing and incorporating online help pages as well as extended documentation in PDF 
format. A package can contain R code, documentation files in a special format which provide 
both online help as well as printed manual and example data sets, but could contain also 
compiled C or Fortran source code which is automatically compiled when building the package. 

 
21. The package ‘check’ tool is invaluable for the package developer and a positive result from the 

check is a must for posting a package on CRAN. Apart from the formal code validation, the 
check procedure includes running all examples from every help page and will build and test the 
package vignettes, if available. It is possible to write test cases in the form of R programs, which 
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will be run, and the output will be compared with the previously stored output. This guarantees 
that no side effects, which broke already working code, appeared with the last changes to the 
package. 

 
22. Currently more than 1300 packages exist on CRAN covering a wide variety of statistical 

methods and algorithms, including the newest achievements in the statistical science. There are 
about a dozen ‘base’ packages, which together with the packages denoted as ‘recommended’ are 
included in all binary distributions of R. 

 
F. R and the Others (Interfaces) 

 
23. When using a statistical system we must have in mind that this is not done in isolation and the 

system must be able to communicate with other systems in order to import data for analysis, to 
export data for further processing (use the right tool for the right work) and to export results for 
report writing.   

 
24. A rich variety of facilities for data import and export as well as for communication with 

databases, other statistical systems and programming languages are available either in R itself or 
through packages available from CRAN. 

 
(a) The easiest data format to import into R is a simple text file but reading XML, spreadsheet 

like data, e.g. from Excel is also possible; 
(b) The recommended package foreign provides import facilities for reading data in the format 

of the statistical packages Minitab, SAS, S-Plus, SPSS, STATA, Systat and Octave as well 
as export capability for writing STATA files, while the package matlab provides emulation 
for Matlab;   

(c) Working with large data sets could be a problem in R (if the data do not fit in the RAM of 
the computer) but the interface to RDBMS could help in such cases. Another limitation is 
that R does not easily support concurrent access to data, i.e. if more than one user is 
accessing, and perhaps updating, the same data, the changes made by one user will not be 
visible to the others. This could also be solved by using the interface to relational databases. 
There are several packages available on CRAN for communication with RDBMSs, 
providing different levels of abstraction. All have functions to select data within the 
database via SQL queries, and to retrieve the result as a whole, as a data frame or in pieces 
(usually as groups of rows). Most packages are tied to a particular database – ROracle, 
RMySQL, RSQLite, RmSQL, RPgSQL, while the package RODBC provides a generic 
access to any ODBC capable relational database. 

(d) R is an interpreted language and some very computation intensive algorithms could be slow 
– in this case a native code implemented in C or FORTRAN is the right solution; 

(e) R has no real (statistical) GUI, which is often criticized by the proponents of point-and-click 
statistical packages, but if it is necessary to develop a nice specialized graphical user 
interface, this could be implemented in Java and R will do the computations in the 
background 

 
G. R for Time Series 

 
25. R has extensive facilities for analysing time series in the packages stats, tseries, zoo, its 

(irregular time series), ast (not yet on CRAN), pastecs (for analysing space-time ecological time 
series) and lmtest. Vito Ricci has compiled a reference card of the most popular time series 
functions – see Ricci (2008). The package stats includes classical time series modelling tools - 
arima() for ARIMA modelling and Box-Jenkins-type analysis. For fitting structural time series 
is available StructTS() in stats and for time series filtering and decomposition can be used 
decompose() and HoltWinters(). The package forecast supplements the tools available in the 
stats package by providing additional forecast methods, and graphical tools for displaying and 
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analysing the forecasts. Further information on time series functions and packages in R can be 
found in the Task View Econometrics - http://cran.r-project.org/web/views/Econometrics.html. 

 
26. The functionality for analysing monthly or lower frequency time series data which is 

implemented in the software packages TRAMO/SEATS (Time series Regression with ARIMA 
Noise, Missing values and Outliers/Signal Extraction in ARIMA Time Series) and X-12-
ARIMA seasonal adjustment software of the US Census Bureau is easily accessible through the 
Gretl library – see Cottrell (2008). 

 
27. In Figure 3 is shown an example of time series analysis functions - arima() for fitting an 

ARIMA model to a univariate time series and tsdiag() for plotting time series analysis 
diagnostics 

 

 
 
Figure 3: Example of time series analysis functions: arima() for fitting an ARIMA model to a univariate time series and 
tsdiag() for plotting time series analysis diagnostics 
 

H. R for Survey Analysis 
 

28. Complex survey samples are usually analysed by specialized software packages. From the most 
well known general-purpose statistical packages Stata provides much more comprehensive 
support for analysing survey data than SAS and SPSS and could successfully compete with the 
specialized packages. In R functionality for survey analysis is offered by several add-on 
packages, the most popular being the survey package. Detailed information can be found in the 
manuals of the package as well as from its home page, maintained by the author, Thomas 
Lumley at http://faculty.washington.edu/tlumley/survey/, but here is a brief overview: 
(a) Designs incorporating stratification, clustering, and possibly multistage sampling, allowing 

unequal sampling probabilities or weights; multistage stratified random sampling with or 
without replacements 
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(b) Summary statistics: means, totals, ratios, quantiles, contingency tables, regression models, 
for the whole sample and for domains 

(c) Variances by Taylor liberalization or by replicate weights (BRR, jack-knife, bootstrap, or 
user-supplied) 

(d) Post-stratification and raking 
(e) Graphics: histograms, hexbin scatterplots, smoothers. 

 
29. Other relevant R packages are pps, sampling, sampfling, all of which focus on design, in 

particular PPS sampling without replacement. 
 

I. R and SDMX 
 

30. No, there is nothing of the kind but this is not much different from the other statistical software 
packages.  There exists a proposal for a new data exchange format for statistical data based on 
XML, which is called StatDataML – see Meyer (2004) – and a corresponding implementation in 
the R package StatDataMl.  

 
J. R and the Outliers (Robust Statistics in R) 

 
31. Atypical observations, which are inconsistent with the rest of the data or deviate from the 

postulated model, usually called outliers, are likely to appear often in the data sets under 
consideration. Unfortunately most of the classical statistical methods are very sensitive to such 
data. Therefore robust statistical methods are developed whose main goal is to produce 
reasonable results even when one or more outliers may appear anywhere in the data.  

 
32. As an example let us consider the “Wages and Hours” data set available at 

http://lib.stat.cmu.edu/DASL/. The data are from a national sample of 6000 households with a 
male head earning less than $15,000 annually in 1966. The data were classified into 39 
demographic groups (if the cases with missing data are removed only 28 groups remain). The 
study was undertaken to estimate the labour supply (average hours) from the available data. 
There are 9 independent variables but for the sake of the example we will consider only one - 
the average age of the respondents, i.e. if y = labour supply and x = average age of the 
respondents we will fit the model xy 10 dd -? .  

 
33. Figure 4 (a) shows a scatterplot of the data with the line fitted by the Ordinary Least Squares 

(OLS) method. It is clearly seen that two observations are outliers – assuming that the 
measurements are correct, the average age of the people in group 3 is very low compared to the 
others while the age of the people in group 4 is on average too high. The line shown in (a) does 
not fit well the data since it is attracted by the outliers. The outliers fall inside the tolerance band 
in the residual plot presented in (b).   The line fitted by the robust Least Trimmed Squares (LTS) 
method, presented in (c) resists the outliers and follows the majority of the data. The 
corresponding residual plot shown in (d) clearly identifies the outliers. For further examples 
based on this data set as well as other information and references about robust statistics see 
Hubert et al. (2004). 

 
34. SAS and Stata have functions for robust regression (PROC ROBUSTREG and rreg respectively) 

while SPSS has no such capability. In R robust methods are available in many packages, the 
most well known being MASS, robustbase, rrcov, robust. The computation and the diagnostic 
plots shown in Figure 4 were produced by the function ltsReg()  from package robustbase. 

 
35. A method for visualization of missing data and robust imputation is developed by Templ et al. 

(2008) and implemented in R (not yet on CRAN)  
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(a)       (b) 

 
   (c)       (d) 
Figure 4: Wages and Hours data: Scatter plot of the data with LS (a) and LTS (c) line as well as their residual plots – 
(b) and (d) respectively 
 

K. More R 
 

36. There are many more topics about R, which deserve our attention but were not considered here 
because of time and space limitations. A brief list is in order. 
(a) R and the WEB – there are several projects that provide possibility to use R as a service 

over the Web. The first one was Rweb – see Rweb Home Page, which provides three types 
of interface: a simple text version, a more sophisticated JavaScript based interface and a 
point-and-click interface, mainly suitable for teaching statistics. Information about other 
Web projects for R is available from R FAQ. 

(b) R and the Missing - Missing values in both character and numeric variables are represented 
by the symbol NA (not available) and most modelling functions offer options for dealing 
with missing values. Advanced handling of missing values is available through a number of 
packages: 

i. mvnmle: ML estimation for multivariate normal data with missing values; 
ii. mitools: Tools for multiple imputation of missing data and to perform analyses and 

combine results from multiple-imputation datasets; 
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iii. mice - Multivariate Imputation by Chained Equations;  
iv. EMV: Estimation of Missing Values for a Data Matrix 

(c) R GUI. As already mentioned, R has no (statistical) GUI and this is a reason often to be 
criticized by the proponents of the point-and-click statistical packages. Nevertheless also 
statistical GUIs are emerging and already several packages exist like Rcomander and 
Sciviews. 

(d) R Objects. One of the main features of R is that it is an object oriented (although not in the 
sense C++, Java and C# are) language. 

 
III. SUMMARY 

 
37. In the following Table 1 is presented a summary of the main differences between R and SAS 

and SPSS. The second part of the table is a comparison of the SAS and SPSS products to the 
approximate equivalent R packages. The table was compiled mainly from Muenchen (2007) but 
only the topics, which are of interest for our work, are considered.  

 

Topic SAS SPSS R 
Output Management 

System 

Rarely used for routine work Output is easily passed from 

one function to another to do 

further processing and obtain 

more results 

Macro language A special language used for performing 
repetitive tasks and adding new functionality. 
The new functions are not run in the same way 
as the built-in procedures 

R itself is a programming 

language. The added new 

functions are run exactly in the 

same way as the built-in ones. 

Matrix language A special language used for adding new 
functionality. The new functions are not run in 
the same way as the built-in procedures 

The base R itself is a vector- 

and matrix-based language, 

and it ships with many 

powerful tools for doing 

matrix manipulations. These 

are complemented by the 

packages Matrix and SparseM. 

Publishing results Cut and paste to a Word processor or exporting 
to a file 

There are possibilities to 

produce Tex output (including 

graphics) using the Sweave 

package 

Data size Limited by the size of the disk Limited by the size of the 

RAM, (not trivial) usage of 

databases for large data sets is 

possible 

Data structure Rectangular data set Rectangular data frame, 

vector, list 

Interface to other 

programming languages 

Not available R can be easily mixed with 

Fortran, C, C++ and Java 



  
 

11

Source code Not available The source code of R as well 

as of the R packages is a part 

of the distribution 

    

Basics SAS® SPSS Base™ R 

Data Access SAS/ACCESS® SPSS Data Access 
Pack™ 

DBI, RODBC, foreign 

Data Mining Enterprise Miner™ Clementine® rattle, arules, FactoMineR 

Geographic Information 
Systems /Mapping 

SAS/GIS®, 
SAS/Graph® 

SPSS Maps™ 
(no full GIS) 

maps, mapdata, mapproj, 
GRASS via spgrass6, 
RColorBrewer, see Spatial in 
Task Views  

GUI Enterprise Guide® SPSS Base™ JGR, R Commander, pmg, 
Sciviews 

Graphics SAS/GRAPH® SPSS Base™ ggplot, gplots,  grid, lotrix, 
graphics, gridBase, hexbin, 
lattice, vcd, vioplot, 
scatterplot3d, geneplotter, 
Rgraphics, 

Dynamic Graphics SAS/INSIGHT® None GGobi via rggobi 
iPlots, Mondrian via Rserve 

Matrix/Linear 
Algebra 

SAS/IML® SPSS Matrix™ R, matlab, Matrix, sparseM 

Missing Values 
Imputation 

SAS/STAT®: MI SPSS Missing Values 
Analysis™ 

aregImpute (Hmisc), EMV, 
fit.mult.impute (Design), mice, 
mitools, mvnmle 

Sampling, Complex or 
Survey 

SAS/STAT®: 
surveymeans, etc. 

SPSS Complex 
Samples™ 

pps, sampfling, sampling, 
spsurvey, survey 

Time Series SAS/ETS® SPSS Trends™ Expert 
Modeler 

Many (> 40) packages  - see 
Task View Econometrics. 

Table 1: Functionality of R, SAS and SPSS 
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1 Introduction

The prestigious 1998 Association for Computing Machinery Award for software systems was

awarded to John Chambers of Bell Labs for the S system. The citation reads, For the S system,

which has forever altered how people analyze, visualize, and manipulate data. R is an open

source implementation of S and S-PLUS its commercial implementation.

R is an extensible, well documented language and environment with a core group of develop-

ers spread out over many countries. The size of its global user group and the diversity in its

applications are some of its many strengths. Aimed at actuaries and especially actuarial science

students who are pondering over the choice of a computing platform to complement MS Excel,

the insurance industry defacto standard, this article makes a case for R.

Designed for statistical computing and embraced by scores of statisticians, most if not all statis-

tical needs of an actuary should be ably served. Hence discussion of its statistical prowess will

be conspicuously absent. The next section will highlight some features of potential interest to

actuaries. Life contingent computations use mortality tables and most of the important tables

are found in the SOA tables database.The third section discusses an implementation of access to

this binary database with the intention of providing the readers with a good starting point for

computing on the life side. Vectorization, the subject of the penultimate section, is an important

concept for computing on R, like on APL and other interpreted vector languages . There we

discuss a vectorized solution for an important class of actuarial algorithms.

2 Some Features of R

First, R has an effective programming language with a simple syntax. The R Language Definition,

describes the syntax as having "a superficial similarity with C, but the semantics are of the FPL (func-

tional programming language) variety with stronger affinities with Lisp and APL.". A Brief History of S

by Richard A. Becker is a worth a read to know of the influences of other languages on the de-

velopment of S. For example, the following is taken from it; "... the basic interactive operation of

S, the parse/eval/print loop, was a well-explored concept, occurring in APL, Troll, LISP, and PPL, among

others. From APL we borrowed the concept of the multi-way array (although we did not make it our ba-

sic data structure), and the overall consistency of operations. The notion of a typeless language (with no

declarations) was also present in APL and PPL.".

Second, R is highly extensible and seamless extensions are carried out using packages. Impor-

tantly, C and FORTRAN code can be linked and called at run time from R not only enabling

N. D. Shyamal Kumar ASA, an assistant professor of Actuarial Science at the University of Iowa, is a member of

the computer science section council. He can be contacted at shyamal-kumar@uiowa.edu.

http://www.acm.org/awards/ss_citations/1998.html
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/doc/94.11.ps
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use of existing code but also providing avenues for accelerating computationally intensive tasks.

And in the other direction, R objects can be manipulated in C. Talking about speed, support for

BLAS (Basic Linear Algebra Subroutines) is provided in R. Also, there is a package called snow

which implements a simple mechanism for computing on workstation clusters. For more details

consult Writing R Extensions.

Third, its reputed ability to produce high quality graphics with a minimal amount of code. The

base graphics system contains both high and low level commands. For a demo of its capabilities,

type demo(graphics) on the R command prompt. Especially important is its ability to generate

graphics for publication in many formats including postscript, pdf, jpeg and png. Also, there is

a separate graphics sub-system called grid which is considered to be more powerful and another

package called gridBase for combining grid and base graphics output. Below is an example

of the use of gridBase, similar to one in Murrell (2003), to combine the ease of a highlevel base

graphics system command to draw a barplot with the power of grid used here to rotate the x-axis

labels.

midpts <- barplot(c(39,30,20,16,13,12), axes = FALSE,

col=c("#7AF1FE","#FCCBFF","#F8DD9E","#9FC9FF",

"#00BFDD","#EB78E4"),ylim=c(0,40));

axis(2); axis(1, at = midpts, labels = FALSE);

vps<-baseViewports();

pushViewport(vps$inner, vps$figure,vps$plot);

grid.text(c("C/C++","Basic/VB","Java","SAS/S-Plus",

"Pascal","FORTRAN"),x=unit(midpts,"native"),

y=unit(-1,"lines"),just="right",rot=60);

popViewport(3);
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And last but not the least, R has many utilities for accessing data. Access to data resident in a

Relational Database Management Systems is provided by several packages. Any system provid-

ing an ODBC interface can be accessed using RODBC. This list not only includes most important

RDBMSs but also databases like MS Access. Also, on Windows, ODBC drivers for text files, Excel

files and Dbase files are available. System specific packages are available for Oracle and MySQL.

R provides tools for accessing data in a binary format which is used in the implementation of

the next section. There is a package to parse XML files using either the DOM or the SAX mech-

anism. Of course, there is a rich support for reading text files. Also, there are packages which

make R a DCOM client (and server too) which help in accessing for example, live (financial) data.

R Data Import/Export is the relevant manual for details.

Since R is well documented, the above description has been kept brief. Moreover, the above

list is just a small subset of its wide ranging capabilities. Observe that some of the described

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-2.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
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features are not part of the core of R but of one of the many packages which seamlessly extend

it. Access to such features requires installation of relevant package(s), a matter of just a few

clicks. At this point, a tour of its official web site at http://www.r-project.org and a browse of

An Introduction to R would be a good idea. And if already convinced to try it out, go ahead

and install your free download!

3 SOA Tables Database

Here we discuss an implementation of access to the SOA tables database. To keep the discus-

sion self contained, the first sub-section describes the SOA tables database files (binary format)

tables.dat and tables.ndx. The next sub-section discusses the implementation along with

some examples of its use.

3.1 Binary Files of SOA DB

The database owes its existence to a joint project of the Technology Section of the SOA, the Inter-

national Section of the SOA and other volunteers. It consists of two binary files - tables.dat,

the data file, and tables.ndx, the index file. The description of the storage format for these files

can be found in the help of TableManager, a software copyrighted by Steve Strommen, FSA,

MAAA, and distributed freely by the SOA. The description is repeated below to keep the arti-

cle self contained. The Table Manager web page also has a MS Excel addin available for free

download for those interested in importing table values directly into Excel. A visit to the page is

highly recommended.

tables.ndx
The primary purpose of this file, as any index file, is to facilitate fast access to a table from the

tables.dat file. This is done by providing the offset, i.e. the number of bytes from the start

of the file, at which the data for a table begins. This is a binary file with a sequence of fixed

size records with an initial offset of 58 bytes (due to descriptive information). Each record has

five fields as depicted in the figure below. The character strings in this file, unlike those of the

tables.dat, are NULL byte terminated (as in C). The usage code is the same as that of the data

file.

32-bit Integer Character String 32-bit Integer Character String 8-bit Integer

4 Bytes 50 Bytes 4 Bytes 31 Bytes 1 Byte

Usage CodeTable Number Table Name Offset Country

4 Bytes 50 Bytes 4 Bytes 31 Bytes 1 Byte

32-bit Integer Character String 32-bit Integer Character String 8-bit Integer

Table Number Table Name Offset Country Usage Code

4 54 58 89 90

Figure 1 An Index File Record

http://www.r-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.soa.org/ccm/content/areas-of-practice/special-interest-sections/technology-section/papers-presentations-research-resources/table-manager/
http://www.soa.org/ccm/content/areas-of-practice/special-interest-sections/technology-section/papers-presentations-research-resources/table-manager/
http://www.soa.org/ccm/content/areas-of-practice/special-interest-sections/technology-section/papers-presentations-research-resources/table-manager/
http://www.soa.org/ccm/content/areas-of-practice/special-interest-sections/technology-section/papers-presentations-research-resources/table-manager/
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Record Types for tables.dat

Type Content Storage Format Possible Values

1 Table Name Character String

2 Table Number 32-bit Integer

3 Table Type Single Character • S - Select

• A - Aggregate by Age

• D - Aggregate by Duration

4 Contributor Character String

5 Source Character String

6 Volume Character String

7 Observation Peri- Character String

od

8 Unit of Observa- Character String

tion

9 Construction Character String

Method

10 Reference Character String

11 Comments Character String

12 Minimum Age 16-bit Integer

13 Maximum Age 16-bit Integer

14 Select Period 16-bit Integer

15 Maximum Select Age 16-bit Integer

16 No. of Decimal 16-bit Integer

Places

17 Table Values Sequence of 8-byte IEEE

floating types

18 Hash Value 32-bit Unsigned Integer

19 Country Character String

20 Usage 8-bit Integer • 0 - No Data

• 1 - Insured Mortality

• 2 - Annuitant Mortality

• 3 - Population Mortality

• 4 - Selection Factors

• 5 - Projection Scale

• 6 - Lapse Rates

• 99 - Miscellaneous

tables.dat
This binary file is a sequence of generic records with a single consecutive sub-sequence of such

records (terminating with a record of type 9999 with missing length and data fields) pertaining

to a single table. The storage format of a generic record is shown below.

Record Type Code - 16 bit Integer Length of the Data - 16 bit Integer Data - Variable LengthRecord Type Code - 16 bit Integer Length of the Data - 16 bit Integer Data - Variable Length

Figure 2 A Generic Record
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There are twenty record types as listed in the following inset. A caveat is that not all the record

types are relevant to a table and moreover not all the relevant types are necessarily present. The

latter becomes important as the data packaged as list may contain some empty components. The

character strings neither have a terminating NULL byte (like C) nor a leading byte containing its

length (like Pascal) - but note that the length can be read off the third and fourth bytes of the

generic record. R as a platform is convenient to read binary files as it has support for reading

IEEE floating point numbers.

The table values are stored in the ascending order of the index (Age or Duration) for types "A"

and "D". For type "S", the order is issue age wise in the ascending order of the select duration

until we hit the maximum issue age and thereafter in the ascending order of the age.

3.2 Implementation

RCode for TblSearch

"TblSearch" <-

function (Na = "", C = "", U = "", No = "")

{

rec <- function(...) {

c(readBin(z, integer(), size = 4), sub("", "", readChar(z,

50)), readBin(z, integer(), size = 4), sub("", "",

readChar(z, 31)), readBin(z, integer(), size = 1))

}

readChar(z <- file("tables.ndx", "rb"), 58)

x <- sapply(1:((file.info("tables.ndx")$size - 58)/90), rec)

close(z)

apply(matrix(c(Na, C, U, No, 2, 4, 5, 1), 4, 2), 1, function(y) {

x <<- x[, grep(y[1], x[as.integer(y[2]), ], perl = TRUE),

drop = FALSE]

})

data.frame(No = as.integer(x[1, ]), Name = x[2, ], Country = x[4,

], Usage = as.integer(x[5, ]), Offset = as.integer(x[3,

]))

}

The first function, TblSearch, provides a query facility for the file tables.ndx. The query has

to be in the form of a PERL regular expression and can be over each of the fields excepting offset.

The result is the set of records satisfying all of the individual constraints (intersection) packaged

as a dataframe object. This function not only helps a user search for tables in the database but

also is used by the function Tbl. The following are some comments on the code.

http://search.cpan.org/dist/perl/pod/perlre.pod
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i. A user may leave unspecified the trailing arguments which would then assume the default

null value..

ii. The function rec reads the five fields for each record and is used by the sapply function.

sapply, used to avoid an explicit loop, returns an array containing the fields for all of the

records in the file.

iii. Once the records are read, successively the regular expressions are used to filter the records

using the apply function.

iv. The last statement packages the array as a dataframe object.

Below are some examples of its use.

1. To list the US insured mortality age last tables for male smokers, one could use

TblSearch("(?i)[^e]male.*[^n]smoker.*last","US")

2. For US insured mortality age last basic tables of 1980, one could use

TblSearch("(?i)1980.*basic.*nearest","US","1")

3. To list just the names of all US annuitant mortality tables, one could use

TblSearch("","US","2")$Name

The second function, Tbl, given a vector of either table numbers or offsets returns a list of lists

containing all the fields for each table requested. If the input is a vector of table numbers then

TblSearch is used to get the offsets. The code could have been a lot shorter but for the need

to have this function vectorized - this way there is just a single read of the file for all the tables

combined. It does not return a dataframe like the earlier function because the mortality rates

data is of varying sizes. To facilitate recursive indexing of the list of lists, the following function

has proved useful. It is left uncommented as the logic is rather straightforward.

"RI" <-

function (z, Name)

{

sapply(1:length(z), function(x) {

z[[c(x, grep(paste("^", Name, "$", sep = ""), c("Name",

"Number", "Type", "Contributor", "Source", "Volume",

"ObsnPeriod", "ObsnUnit", "Method", "Reference",

"Comments", "MinAge", "MaxAge", "SelPeriod", "MaxSelAge",

"NumDec", "Rates", "HashValue", "Country", "Usage"),

perl = TRUE))]]

})

}
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RCode for Tbl

"Tbl" <-

function (Offset, Num = TRUE)

{

FT <- c(1, 2, array(1, 9), array(2, 5), 3, 2, 1, 2)

Table <- vector(length(Offset), mode = "list")

Len <- 0

z <- file("tables.dat", "rb")

if (Num) {

Offset <- TblSearch("", "", "", paste("^", as.character(Offset),

"$", sep = "", collapse = "|"))$Offset

}

Offset <- sort(Offset)

Offset <- Offset - c(0, Offset[-length(Offset)])

for (i in 1:length(Offset)) {

readChar(z, Offset[i] - Len)

Len <- 0

F <- 0

T <- vector(20, mode = "list")

attributes(T) <- list(names = c("Name", "Number", "Type",

"Contributor", "Source", "Volume", "ObsnPeriod",

"ObsnUnit", "Method", "Reference", "Comments", "MinAge",

"MaxAge", "SelPeriod", "MaxSelAge", "NumDec", "Rates",

"HashValue", "Country", "Usage"))

while (F != 9999) {

F <- readBin(z, integer(), size = 2)

Len <- Len + 2

if (F != 9999) {

l <- readBin(z, integer(), size = 2)

Len <- Len + 2 + l

T[[F]] <- switch(FT[F], readChar(z, l), readBin(z,

integer(), size = l), as.array(readBin(z, double(),

n = l/8, size = 8)))

}

}

Table[[i]] <- T

}

close(z)

Table

}
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Below are some queries, similar to the ones above, using the additional fields from tables.dat.

Examples of life contingency calculations will be part of the next section.

1. To find the names of all select and ultimate US insured mortality tables, one could use

RI((y<-Tbl(TblSearch("","US","1")$Offset,FALSE))[sapply(1:length(y),function(x){

y[[x]]$Type})=="S"],"Name")

2. The following lists the names of insured aggregate mortality tables whose rates do not satisfy

the monotonicity beyond the age 35.

x<-(y<-Tbl(sort(TblSearch("","","1")$Offset),FALSE))[sapply(1:length(y),function(x){

y[[x]]$Type})=="A"]

RI(x[as.logical(1-sapply(x,function(z) {min((z$Rates[-length(z$Rates)]<=z$Rates[-1])

[-(1:(35-z$MinAge))])}))],"Name")

4 Vectorization

Most actuarial quantities on the life side satisfy a linear difference equation of the first order. On

compiled languages, a simple loop is the way to go and the direction in most actuarial problems

happens to be backward, in some forward and in the rest one could choose either one. This is

the way one computes on any spread sheet platform too - the loop becoming relative references

to the preceding or succeeding cell.

When working with an interpreted vector language, explicit loops are inefficient in the presence

of an algorithm which is able to vectorize the problem. It is not that vectorization removes the loop

but rather that it makes the loop implicit i.e. it is executed internally. In the actuarial literature,

see Shiu (1987), Shiu & Seah (1987) and Giles (1993), it has been noted that the usual closed form

solution of the linear difference equation translates to elegant (concise) APL code. More than

the brevity of the APL code that the closed form yields to a vectorized solution is important. In

other words, as in Shiu (1987), that the closed form solution can be translated to a code which

avoids explicit loops is the key. Hence this solution will lead to not only concise but an efficient

solution to the problem on all vector languages where explicit loops are inefficient. Below are

the details.

Life contingencies abounds with difference equations of the first order. Some are listed below.

1. The curtate future lifetime of a life aged (x) satisfies,

ex = px + pxex+1

2. The actuarial present value of a whole life insurance with benefits payable at the end of the

year of death satisfies,
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Ax = νqx + νpxAx+1

3. Fackler’s formula for the reserves of a fully discrete annual whole life on (x) satisfies,

nVx = νqx+n − Px + νpx+n n+1Vx

4. Hattendorff’s formula for the variance of the loss random variable underlying a fully discrete

annual whole life on (x) satisfies,

Var (nL|K(x) ≥ n) = ν2qx+npx+n (1 − n+1Vx)2
+ ν

2px+nVar (n+1L|K(x) ≥ n + 1)

All of the above are backward in nature as the boundary value at the right end is known. More-

over, they are each just a particular case of the equation

xn = an + bnxn+1, n = 1, 2, . . . , k with xk+1 known

It is easy to show that the solution is given by,

xn =

xk+1
∏

k

0 bi +

∑

k

l=n
al

∏

l−1
0 bi

∏

n−1
0 bi

, where b0 = 1 and n = 1, 2, . . . , k

The R code for the above, which for matter of style has not been compressed into a single line, is

encapsulated by the function BD.

"BD" <-

function (a, b, bv)

{

s <- rev(cumprod(c(1, b)));

(rev(cumsum(s[-1] * rev(a))) + s[1] * bv)/rev(s[-1])

}

As an example, below is an R code for a plot of the curve of curtate life expectation for each of

the CSO 1980 basic age nearest tables. Note that the curve for female smokers is higher than that

of male non-smokers.

y<-c("#7AF1FE","#FCCBFF","#F8DD9E","#9FC9FF","#00BFDD","#EB78E4")

x<-Tbl(TblSearch("(?i)1980.*basic.*nearest","US","1")$Offset,FALSE)

matplot(25:100,sapply(x,function(z) {BD(a,a<-(1-z$Rates[-c(1:(25-z$MinAge))]),0)}),type="l",

lwd=2,ylab="",xlab="x",lty=1,col=y,main="Curtate Expectation of Life\n 1980 US CSO Age

Nearest")

legend(x=70,y=50,gsub("(1980 US CSO Basic|Age nearest)","",RI(x,"Name")),fill=y,

horiz=FALSE)
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5 Conclusion
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As some of the other interpreted

vector languages, R is a fantastic

tool for rapid prototyping; be-

sides, it offers a large coherent

set of utilities. This combina-

tion of a prototyping language

with an environment could be

particularly desirable by those

who compute as part of their

job while not being responsi-

ble for development of software

systems. In fact, R allows one

to smoothly move from a proto-

type to a compiled code as it al-

lows for one to access such code

from within R.

For an actuarial science program, a powerful case can be made for adoption of R as the standard

software across courses.
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Abstract

We describe an approach for performing general statistical analysis and computations directly within a relation
database server rather. This is in contrast with the more typical approach of transferring data to the client from the
server and having the client perform the analyses. We outline some of the advantages of embedding the R statistical
environment (language, interpreter and libraries) within the Postgres server over the usual client-processing approach.
We give examples of the three classes of functions currently supported by this embedding approach.

1 Introduction

The reliance on databases has increased dramatically in the past few years. This is likely to increase due to the
continuing escalation of the volume of data that we acquire and store. Statisticians have recognized the urgent need to
communicate with these Relational Database Management Systems (RDBMS) and improved support has been added
to environments such as R[2], and integration into the statistical language in the Omegahat language. However, support
within these languages focus on access for statisticians and data analysts. It is more common that non-data analysts
will be accessing the RDBMS servers and would benefit from access to statistical methodology. This is an inversion of
the classical way we as statisticians have thought about statistical methodology and RDBMS. We think of embedding
access to the RDBMS in the statistical software. We are suggesting embedding statistical software within the RDBMS.

In programming terms, the difference in the approach we discuss here can be succinctly illustrated in the two
pseudo commands

f( SELECT x FROM table ) client-side
SELECT f(x) FROM table server-side

In the first case, the data is returned to the client via the SELECT query, and then the client operates on the values via
the functionf(). In the second approach, the server performs the per-value processing and returns just the result.

The obvious benefits from making statistical software directly accessible from within RDBMS servers include

• users can employ the familiar SQL language to invoke functions implemented in the statistical language without
needing to understand that these functions are not built-in SQL functions;

• statisticians can rapidly develop and make available new methodology using their familiar;

• performance improvements accrue since we do not transfer the data to the client and process there, but perform
the data reduction on the server and transfer only that reduced data.

• from regular clients, we can add new code to the statistical environment within the server

• there is increased potential for caching results that would ordinarily be computed in different client applications
and thus reducing query time.

1

http://www.r-project.org
http://www.omegahat.org
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As with most ideas these days, embedding statistical software within an RDBMS is not an approach that dominates
the other. There are numerous trade-offs that have to be understood before deciding on a strategy. The benefit of the
approach is that “we” – accessors of data interested in statistical methodology – have more options from which to
choose the most appropriate solution. The immediate benefit of embedding R within Postgres [1] is that we can quickly
explore these benefits and understand the trade-offs using available software. One potential reason that we may not
see performance gains is the vectorized nature of S computations. Most S functions work on multiple observations in
a single invocation and are efficient by passing all of the observations to native (C or Fortran) code in one step. When
we use S functions for record-wise operations in Postgres, each invocation of the S function will be given just one
observation. These repeated calls may incur an overhead and lose the efficiency of the vectorized operations. More
investigation is needed.

In this short paper, we will outline three different scenarios in which using statistical software embedded within
the server might be useful. In section 2, we show how we can use a fixed model to predict the values for a collection
of records within a database. In section 3, we show how we can use the statistical environment for fitting statistical
models to large quantities of data using incremental, or record-wise, algorithms. Finally, we show how we can use
“trigger functions” to process data as it is entered into the database. This allows us to discard certain observations, and
correct or impute fields within the record before they are stored within a table.

These examples illustrate the three different categories of functions that we can define in an SQL extension lan-
guage. These are record-wise, aggregate, and trigger functions.

While our focus is on client use of the statistical environment within the database, the embedded statistical en-
vironment can also be used directly by the RDBMS server. There is potential to obtain non-trivial performance
improvements by using statistical methodologies to control evaluation of queries, including caching, prediction of
execution times, etc. We hope this avenue will explored using the embedded system to facilitate rapid prototyping and
experimentation.

2 Prediction

In this example, we assume that the data analyst has explored a training set and decided on a particular model. They
have fit that model to the available data and it is now available for prediction purposes. The model may be a parametric
model, for example a linear model, or may be a non-parametric fit such as CART. This model can be used within S
to make predictions for one or more new records. The user of the database now decides that she wants to predict the
value for different records. She does this by issuing an SQL query from her software and is returned a column of
predicted values corresponding to the different records identified in her query.

The user will specify the records and variables of interest using a regular SQL command such as

select predict(x1,x2) from table

This selects all the records in the table and passes each, one at a time, to the predict function. Each call to this function
returns, in this case, a single real number. These values are then available to the caller as a column in the result set of
the query. A criterion for selecting different records can also be supplied in this SQL expression using the WHERE
clause. The details of the invocation of the R function remain unchanged.

How do we arrange to have this query do the appropriate computations? We start with a fitted model computed
off-line in an earlier R session.Let’s call this fitm(). We store this on disk using thesave()function in R. Now, within
the Postgres server, we retrieve this object and make it available to the Rsession1

While we have stored fitted model (m()) on disk, we could of course have stored it directly within the database.
This might be stored as a binary object (blob), using its XML representation, or any other serialization approach.

Next, we register a Postgres function named predict that will forward the request to R. We do this using the
CREATE FUNCTIONcommand in Postgres. We specify the name of the function and the types of the arguments. In
this case, we specify the argument types for the two columns within the table that we will pass as predictors. These
are both real-valued variables so we specify these as float*. We should note that this can be automated from within a
client application. For example, using R as a client, we can issue a query to retrieve the types of the columns in the
table and then generate theCREATE FUNCTIONcall. If we want only a subset of the columns, then we will have to
identify these and it may be more expeditious to specify the signature (argument types) of the function directly. So, as
we build up the SQL command to define the function, we have the following at this point:

1Currently, there is a single session within the entire Postgres session. However, in the near future there will multiple interpreters.
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CREATE FUNCTION predict(float8, float8)

We might prefer to have the function definition indicate that one could call it with an entire tuple rather than having
to explicitly enumerate each column in the table. This would make it more useful within other tables and also allow
the caller to specify different columns directly.2.

Next, we specify the return type of the function. Again, this is real value in our example. This adds a little more to
the command to to give:

CREATE FUNCTION predict(float8, float8) RETURNS float8

The next piece of the Postgres function definition involves defining the function itself. In this case, we want to call
thepredict()function, transforming the arguments from Postgres into a data frame with a single row. We pass this data
frame and the previously fitted model to predict and have it return the result. To do this, we define a new (anonymous)
S function that performs these steps, giving it Postgres as the string value of the AS clause.

And finally, we specify the language in which the function is actually implemented. This identifies where Postgres
should dispatch (or “send”) the call. Since this is a record-wise function, we use the procedural languagepl_R . At
this point, we have all the elements of the command to define the Postgres function that will call R to perform the
prediction.

CREATE FUNCTION predict(float8, float8) RETURNS float8
AS ’function(x1, x2) {

predict(model, data.frame(x1=x1,x2=x2))
}’

LANGUAGE ’pl_R’

Before invoking this function, we must load themodel()object into the R session. We can do this using the load
function that we have defined earlier as part of thepl_R Postgres extension language.

SELECT load(’/home/duncan/model.RData’);

In the future, we will define this function in a more generic manner so that it takes a tuple with arbitrary variables
and constructs the data frame using the names and corresponding values of these variables. In other words, we will
have something like

function(tuple) {
predict(model, as.data.frame(tuple))

}

The tuple is effectively a named list and so the call toas.data.frame()will create a data frame with one row.
Calling predict() within the server has allowed us to avoid transferring data from the server to the client and to

operate on the data in-place on the powerful server. Additionally, we have been able to use existing software (the
prediction function)without modification.

2.1 Multiple Models and Closures

The reader might ask how we could handle prediction for two different models. Since the function we defined uses a
global variable (m()), we would have to ensure that we had assigned the fitted model to this variable before we execute
the query. This reliance on global variables is bad software design. While it would be better to pass the fitted model in
the query, this is not feasible given the way SQL and Postgres work. Instead, we want each instance of this function
to know about its own model. We can do this lexical scoping and closures. We first define a function in R that returns
thepredict()function.

predictGen <-
function(model) {

f <- function(...) {
predict(model, data.frame(...))

2We will work on this
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}
return(f)

}

Now, when we call thepredictGen()function, we get a new instance of the function it returns. Each of these has access
to themodel()object with which thepredictGen()was called. This allows us to create different prediction functions
that can work with different models.

Now, instead of supplying the definition of an R function within the AS clause of the Postgres function definition,
we specify an R expression that callspredictGen(). We do this as

CREATE FUNCTION predict(float8, float8) RETURNS float8
AS ’predictGen(load(’’model.Rdata’’))’
LANGUAGE ’pl_R’

(Notice the double quotes within the outer ” pair). The AS in this Postgres command callspredictGen()with an
R object that is loaded from a serialized version of the previously fitted model. We can create a different Postgres
function, say predict1, in the same way but specifying a different file name in the call toload() from which to read the
previously fitted model.

3 Record-wise Model Fitting: Regression

In this example, we process multiple records and compute a result that is aggregation of these. These types ofaggregate
functions can be used in statistical computations to fit models, compute statistics for groups of observations. In this
example, we use

Many statistical algorithms can be readily computed record-wise. A challenge is to program these and handle
others. We do not need to work on individual records but can gather blocks of observations.

Our example will compute the median of a variable. We use a statistical approach to estimate the median rather
than store all the values in memory. This is based on work [?] by John Chambers, David James, Dianne Lambert
and Scott Vander Wiel and uses the R package developed by David James. The package uses a class of “object”
that supports methods for merging new observations with those previously processed and updating the estimate of the
quantiles of the variable. The constructor or generator function is namedagentIQ()and its first method ismerge()and
the second ismedian()3

We define the aggregator function with the following command.

CREATE AGGREGATE rquantile(
basetype=float8,
initcond1=’agentIQ(100)’
finalfunc=pl_ragg_float8_result,
stype1=RAggregator,
sfunc1=r_update_float8,

);

The important elements of this command are the first 2, and the others follow closely from this information. We
firstly specify that the aggregator works on real numbers ((float8)). This establishes the type of the variable being
processed.

Next, we specify how to create the object that is to be updated with each record. This is an R command which
should return such an object. In this case, the functionagentIQ()is called and the buffer size is given as100. For
each collection or group of records, this R expression will be evaluated. Therefore, for each invocation of the rquantile
function, or for each group of records in a GROUP BY query, we will create a new instance of the updating object.
Each of these will act independently of the others.

Since we this aggregator function is dealing with individual float8 values, it is natural to use the r˙update˙float8
function as the one to do the record-wise updating. This is a function provided by the embedded R facility and is
used for updating an updatable R object with one real value. We make the broad class of updatable R objects known

3This uses a slightly modified version of R package in order to simplify the example.
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to R as the Postgres data type RAggregator. This is a general R object, but usually provided in the form of a list of
functions defining a closure. It should have at least two methods. The first is the update function which is called for
each record in the query with the value(s) in the SELECT clause. The second function is the one that is called to get
the result when all the records in the group have been processed. This takes no arguments and is expected to return the
aggregated result. In our case, this is themedian()function.

One need not have these functions as the first and second elements in the list of functions returned by the initial-
ization expression. Alternatively, one can specify them as named elements in the list with the namesupdate and
result respectively.

In our example, we modified the functionagentIQ()so that the second element in the list of functions it returns
was the final function that returned the estimate of the median. The unaltered package has thequantile()function as
the second element of the list. We cannot use that since we have to specify which quantile we are interested in.

One approach is to append aresult() function to the list returned by the call toagentIQ(). We do this in the
initcond1 attribute in the call to CREATE AGGREGATE. In our example, we would have something like

CREATE AGGREGATE rquantile(
basetype=float8,
finalfunc=pl_ragg_float8_result,
stype1=RAggregator,
sfunc1=r_update_float8,
initcond1=’ tmp <- agentIQ(100)

f <- function() { quantile(.5)}
environment(f) <- environment(tmp{\Tt{}1})
c(tmp, result= f)’

);

Note how we have to change the environment of the new function so that it can see the other functions and variables
within the closure. We can of course write a function to hide the details of this merging of a new function into a
closure. We might replace the four R expressions with a single expression of the form

addFunction(agent(100), result= function() { quantile(.5)})

4 Data Collection and Filtering

In many situations, data is gathered dynamically, processed by different applications and added to a table in a database.
Observations are collected from devices connected to machines and relayed to the database. This is common in
manufacturing and gathering web traffic information such as click-streams.

We consider a simple example in which we verify the values within the tuple being inserted into a table. We check
that the value of a particular real-value field in the tuple falls in the appropriate range. We start with a table that
has, for simplicity, three fields:identifier , age andstartingDate . The client application will issue an SQL
command such as

INSERT INTO table VALUES (’123456’, 55, ’2001-03-17’);

to put the triple of an identifier, age and starting date into the table. In this study, we limit the age of the participants to
be between30 and39. Therefore, in this case, we want to reject the tuple.

To do this, we want to associate a function that gets called each time an tuple is entered into the table. The function
might look something like the following:

function(tuple) {
age <- tuple{\Tt{}"age"}
if(age < 30 || age > 39)

return(NULL)

return(tuple)
}
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This extracts the value of the age variable from the tuple that is being inserted and then checks whether the value is in
the specified range. If it is not acceptable, we returnNULL to signal to Postgres that it should abandon the insertion.
Otherwise, we return the tuple that was handed to the function and Postgres will proceed to insert the record.

Now that we have the function, we need only arrange for it to be called. We first define it as a trigger function, and
then we associate it with insertion events on the table of interest. We define the function as

CREATE FUNCTION checkAge() RETURNS OPAQUE
AS ’ function(triggerInfo) {

age <- triggerInfo$tuple["age"]
if(age < 30 || age > 39)

return(NULL)

return(tiggerInfo$tuple)
}’ LANGUAGE ’pl_R’;

The S function takes a reference to the trigger information provided by Postgres. Inside in this is the actual tuple that
is being inserted into the table. There are a variety of functions that allow us to get and set the names and values of the
variables in the tuple, etc. In this case, we just extract the value of theage variable and check that this is within the
range. If not, we abandon the insertion by returningNULL. Otherwise, we just return the tuple value that was given
to us.

Finally, we register the trigger with the table. In this case, we want to be notified before the values are actually
inserted so that we can veto it. Therefore, we qualify the trigger event with the BEFORE keyword.

CREATE TRIGGER foo BEFORE INSERT ON table
FOR EACH ROW EXECUTE PROCEDURE checkAge();

Now, issuing the insertion “queries”

INSERT INTO table VALUES (’123456’, 55, ’2001-03-17’)
INSERT INTO table VALUES (’100056’, 32 ’2000-12-10’)

results in the first being rejected and the second accepted. We check this by issuing the query

SELECT count(*) from table;

before and after the insertions.
Note that in this case, we are not using R’s statistical capabilities in the function. We are merely using it as a

convenient, high-level scripting language. Other useful examples of triggers do use the statistical functionality. We
might update aggregate statistics (means, correlation matrices, model fits, etc.) about the table. Alternatively, we
might performing transformations on the tuple’s elements such as histogram equalization or coordinate registration
for images, and so on. Triggers can also be defined for deletions from tables allowing us to perform the same sort of
“updates” but as data is removed.

5 Stand-alone Functions

We have discussed using R functions in terms of operations on tables. Record, aggregate and trigger functions each
operate on records associated with tables. However, we can call record-oriented Postgres functions directly and in-
dependently of a table. For example, we can invoke the gamma function provided in the examples shipped with the
package via the query

SELECT gamma(4);

Similarly, we can define other stand-alone, or table independent, functions that can be implemented using R functions.
For example, we can define functions to manage the R session and interpreter. These are regular Postgres functions
that are members of thepl˙R language and defined as in section 2.

We can provide a function for attaching and detaching R packages/libraries. This might be defined as
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CREATE FUNCTION library(text) RETURNS int4
AS ’function(x) {library(x); T}’
LANGUAGE ’pl_R’;

Similarly, we can provide functions for examining the variables in the global environment using theobjects()
function. In this case, it returns an array of strings – the names of the variables – and is a simple, direct call to objects
and so needs no AS clause. The declaration can be given as

CREATE FUNCTION objects() RETURNS _text AS ’’ LANGUAGE ’pl_R’;

This support for reflectance on the session allows priviliged users toexternallymonitor and repair the R interpreter
running within the server. This will hopefully allow non-intrusive diagnostic and maintenance actions without having
to restart the server.

6 Current Status

We have developed software for embedding the statistical environment R within the Postgres RDBM server, and also
the Omegahat and Java interpreters within MySQL. I currently feel that the RDBMS software on which we should
focus our efforts are Postgres and Oracle. MySQL was not designed to admit such extensions. While it has been
possible to add them, installing them requires modifying the MySQL code. This makes maintaining the extension
complex and supporting different variants more time consuming.

This package follows our original work to modify the internals of MySQL (version 3.23.16) to support user defined
functions (UDF) implemented in interpreted languages, specifically Java and Omegahat. Because MySQL was not
originally designed to be extensible in this manner, and also does not support the rich set of object features that Postgres
does, it is likely that we will not pursue the MySQL approach as part of our research. We encourage any interested to
contact us and perhaps use the code we have developed. We will probably focus on extending the embedded language
approach within both Postgres and Oracle.

7 Future Work

We have not mentioned any details about performance improvements that can be achieved using this embedding
approach. This requires careful attention and an appropriate experimental design to account for the numerous factors
that will influence the performance of the embedding and the client approaches. The obvious factors include available
network bandwidth; the computational resources of the server (CPU(s), RAM, I/O speed); the average number of
concurrent queries and the load on the server; the size of the tables being accessed; and so on.

A glaring omission in the current version of the package is the ability to convert R objects to Postgres arrays. This
will be added shortly.

Minor enhancements to the code can be made for use with Postgres 7.1 which should realize large performance
improvements. The ability to locate the S function just once per query and hence avoid the cost of per-record lookup
should be quite significant in performance terms.

We may also explore storing S objects within the database itself, using binary, XML and text representations to
serialize the objects. Additionally, we will explore using S objects and classes to exploit Postgres’s extensible data
types at the user level. (We already use this extensibility in defining the RAggregator type.) As mentioned above, we
will also explore how we can pass a tuple as an argument to the record and aggregate handler functions. It is not clear
that this is always possible.

We may also add functionality to R so that the R interpreter running within the Postgres server can access the
tables within the server. This involves creating an interface between R and the Postgres Server Programming Interface
(SPI). The tuple access in the trigger functions already uses this, and it is reasonably straightforward to add explicit
support at the S language-level for the entire interface.

There are many enhancements that are needed to the statistical systems before one can deploy the embedded
R within the RDBMS server approach in “production” systems. Most RDBMS servers are multi-threaded, while
most statistical software is not. We are in the process of making R support multiple interpreters, and then hopefully
concurrency/parallelism [3]. We need to add a security infra-structure to R so that users invoking R functions have
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limited access to low-level system functions. They should not be able to access data in other concurrent R interpreters
within the database. Nor should users be able to load their own C code or execute calls to the underlying operating
system (e.g. usingsystem()). And we must have a mechanism to identify and prohibit denial-of-service (DoS) attacks
caused by consuming the servers resources (CPU cycles, disk space and access, etc.) These are active areas of research
for some of us.
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4 Relational databases

4.1 Why use a database?

There are limitations on the types of data that R handles well. Since all data being manip-
ulated by R are resident in memory, and several copies of the data can be created during
execution of a function, R is not well suited to extremely large data sets. Data objects
that are more than a (few) hundred megabytes in size can cause R to run out of memory,
particularly on a 32-bit operating system.

R does not easily support concurrent access to data. That is, if more than one user is
accessing, and perhaps updating, the same data, the changes made by one user will not be
visible to the others.

R does support persistence of data, in that you can save a data object or an entire
worksheet from one session and restore it at the subsequent session, but the format of the
stored data is specific to R and not easily manipulated by other systems.

Database management systems (DBMSs) and, in particular, relational DBMSs
(RDBMSs) are designed to do all of these things well. Their strengths are

1. To provide fast access to selected parts of large databases.

2. Powerful ways to summarize and cross-tabulate columns in databases.

3. Store data in more organized ways than the rectangular grid model of spreadsheets and
R data frames.

4. Concurrent access from multiple clients running on multiple hosts while enforcing se-
curity constraints on access to the data.

5. Ability to act as a server to a wide range of clients.

The sort of statistical applications for which DBMS might be used are to extract a 10%
sample of the data, to cross-tabulate data to produce a multi-dimensional contingency table,
and to extract data group by group from a database for separate analysis.

Increasingly OSes are themselves making use of DBMSs for these reasons, so it is nowa-
days likely that one will be already installed on your (non-Windows) OS. Akonadi is used
by KDE4 to store personal information and uses MySQL. Several Mac OS X applications,
including Mail and Address Book, use SQLite.

4.2 Overview of RDBMSs

Traditionally there had been large (and expensive) commercial RDBMSs (Informix; Oracle;
Sybase; IBM’s DB2; Microsoft SQL Server on Windows) and academic and small-system
databases (such as MySQL, PostgreSQL, Microsoft Access, . . . ), the former marked out
by much greater emphasis on data security features. The line is blurring, with the Open
Source MySQL and PostgreSQL having more and more high-end features, and free ‘express’
versions being made available for the commercial DBMSs.

There are other commonly used data sources, including spreadsheets, non-relational
databases and even text files (possibly compressed). Open Database Connectivity
(ODBC) is a standard to use all of these data sources. It originated on Windows (see
http://www.microsoft.com/data/odbc/) but is also implemented on Linux/Unix/Mac
OS X.

http://en.wikipedia.org/wiki/Akonadi
http://www.informix.com
http://www.oracle.com
http://www.sybase.com
http://www.ibm.com/db2
http://www.microsoft.com/SQL/default.mspx
http://www.microsoft.com/data/odbc/
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All of the packages described later in this chapter provide clients to client/server data-
bases. The database can reside on the same machine or (more often) remotely. There is an
ISO standard (in fact several: SQL92 is ISO/IEC 9075, also known as ANSI X3.135-1992,
and SQL99 is coming into use) for an interface language called SQL (Structured Query Lan-
guage, sometimes pronounced ‘sequel’: see Bowman et al. 1996 and Kline and Kline 2001)
which these DBMSs support to varying degrees.

4.2.1 SQL queries

The more comprehensive R interfaces generate SQL behind the scenes for common opera-
tions, but direct use of SQL is needed for complex operations in all. Conventionally SQL is
written in upper case, but many users will find it more convenient to use lower case in the
R interface functions.

A relational DBMS stores data as a database of tables (or relations) which are rather
similar to R data frames, in that they are made up of columns or fields of one type (numeric,
character, date, currency, . . . ) and rows or records containing the observations for one entity.

SQL ‘queries’ are quite general operations on a relational database. The classical query
is a SELECT statement of the type

SELECT State, Murder FROM USArrests WHERE Rape > 30 ORDER BY Murder

SELECT t.sch, c.meanses, t.sex, t.achieve

FROM student as t, school as c WHERE t.sch = c.id

SELECT sex, COUNT(*) FROM student GROUP BY sex

SELECT sch, AVG(sestat) FROM student GROUP BY sch LIMIT 10

The first of these selects two columns from the R data frame USArrests that has been
copied across to a database table, subsets on a third column and asks the results be sorted.
The second performs a database join on two tables student and school and returns four
columns. The third and fourth queries do some cross-tabulation and return counts or
averages. (The five aggregation functions are COUNT(*) and SUM, MAX, MIN and AVG,
each applied to a single column.)

SELECT queries use FROM to select the table, WHERE to specify a condition for
inclusion (or more than one condition separated by AND or OR), and ORDER BY to sort
the result. Unlike data frames, rows in RDBMS tables are best thought of as unordered,
and without an ORDER BY statement the ordering is indeterminate. You can sort (in
lexicographical order) on more than one column by separating them by commas. Placing
DESC after an ORDER BY puts the sort in descending order.

SELECT DISTINCT queries will only return one copy of each distinct row in the selected
table.

The GROUP BY clause selects subgroups of the rows according to the criterion. If more
than one column is specified (separated by commas) then multi-way cross-classifications
can be summarized by one of the five aggregation functions. A HAVING clause allows the
select to include or exclude groups depending on the aggregated value.

If the SELECT statement contains an ORDER BY statement that produces a unique
ordering, a LIMIT clause can be added to select (by number) a contiguous block of output
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rows. This can be useful to retrieve rows a block at a time. (It may not be reliable unless
the ordering is unique, as the LIMIT clause can be used to optimize the query.)

There are queries to create a table (CREATE TABLE, but usually one copies a data
frame to the database in these interfaces), INSERT or DELETE or UPDATE data. A table
is destroyed by a DROP TABLE ‘query’.

Kline and Kline (2001) discuss the details of the implementation of SQL in Microsoft
SQL Server 2000, Oracle, MySQL and PostgreSQL.

4.2.2 Data types

Data can be stored in a database in various data types. The range of data types is DBMS-
specific, but the SQL standard defines many types, including the following that are widely
implemented (often not by the SQL name).

float(p) Real number, with optional precision. Often called real or double or double
precision.

integer 32-bit integer. Often called int.

smallint 16-bit integer

character(n)

fixed-length character string. Often called char.

character varying(n)

variable-length character string. Often called varchar. Almost always has a
limit of 255 chars.

boolean true or false. Sometimes called bool or bit.

date calendar date

time time of day

timestamp

date and time

There are variants on time and timestamp, with timezone. Other types widely imple-
mented are text and blob, for large blocks of text and binary data, respectively.

The more comprehensive of the R interface packages hide the type conversion issues from
the user.

4.3 R interface packages

There are several packages available on CRAN to help R communicate with DBMSs. They
provide different levels of abstraction. Some provide means to copy whole data frames to
and from databases. All have functions to select data within the database via SQL queries,
and to retrieve the result as a whole as a data frame or in pieces (usually as groups of rows).

All except RODBC are tied to one DBMS, but there has been a proposal for a uni-
fied ‘front-end’ package DBI (http://developer.r-project.org/db) in conjunction with
a ‘back-end’, the most developed of which is RMySQL. Also on CRAN are the back-
ends ROracle, RPostgreSQL and RSQLite (which works with the bundled DBMS SQLite,
http://www.sqlite.org), RJDBC (which uses Java and can connect to any DBMS that

http://developer.r-project.org/db
http://www.sqlite.org
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has a JDBC driver) and RpgSQL (a specialist interface to PostgreSQL built on top of
RJBDC).

The BioConductor project has updated RdbiPgSQL (formerly on CRAN ca 2000), a
first-generation interface to PostgreSQL.

PL/R (http://www.joeconway.com/plr/) is a project to embed R into PostgreSQL.

4.3.1 Packages using DBI

Package RMySQL on CRAN provides an interface to the MySQL database system (see
http://www.mysql.com and Dubois, 2000.). The description here applies to version 0.5-0:
earlier versions had a substantially different interface. The current version requires the DBI
package, and this description will apply with minor changes to all the other back-ends to
DBI.

MySQL exists on Unix/Linux/Mac OS X and Windows: there is a ‘Community Edition’
released under GPL but commercial licenses are also available. MySQL was originally a
‘light and lean’ database. (It preserves the case of names where the operating file system is
case-sensitive, so not on Windows.)

The call dbDriver("MySQL") returns a database connection manager object, and
then a call to dbConnect opens a database connection which can subsequently be
closed by a call to the generic function dbDisconnect. Use dbDriver("Oracle"),
dbDriver("PostgreSQL") or dbDriver("SQLite") with those DBMSs and packages
ROracle, RPostgreSQL or RSQLite respectively.

SQL queries can be sent by either dbSendQuery or dbGetQuery. dbGetquery sends the
query and retrieves the results as a data frame. dbSendQuery sends the query and returns
an object of class inheriting from "DBIResult" which can be used to retrieve the results,
and subsequently used in a call to dbClearResult to remove the result.

Function fetch is used to retrieve some or all of the rows in the query result, as a list. The
function dbHasCompleted indicates if all the rows have been fetched, and dbGetRowCount

returns the number of rows in the result.

These are convenient interfaces to read/write/test/delete tables in the database.
dbReadTable and dbWriteTable copy to and from an R data frame, mapping the row
names of the data frame to the field row_names in the MySQL table.

> library(RMySQL) # will load DBI as well

## open a connection to a MySQL database

> con <- dbConnect(dbDriver("MySQL"), dbname = "test")

## list the tables in the database

> dbListTables(con)

## load a data frame into the database, deleting any existing copy

> data(USArrests)

> dbWriteTable(con, "arrests", USArrests, overwrite = TRUE)

TRUE

> dbListTables(con)

[1] "arrests"

## get the whole table

> dbReadTable(con, "arrests")

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

http://www.joeconway.com/plr/
http://www.mysql.com
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Arkansas 8.8 190 50 19.5

...

## Select from the loaded table

> dbGetQuery(con, paste("select row_names, Murder from arrests",

"where Rape > 30 order by Murder"))

row_names Murder

1 Colorado 7.9

2 Arizona 8.1

3 California 9.0

4 Alaska 10.0

5 New Mexico 11.4

6 Michigan 12.1

7 Nevada 12.2

8 Florida 15.4

> dbRemoveTable(con, "arrests")

> dbDisconnect(con)

4.3.2 Package RODBC

Package RODBC on CRAN provides an interface to database sources supporting an ODBC

interface. This is very widely available, and allows the same R code to access different
database systems. RODBC runs on Unix/Linux, Windows and Mac OS X, and almost all
database systems provide support for ODBC. We have tested Microsoft SQL Server, Access,
MySQL, PostgreSQL, Oracle and IBM DB2 on Windows and MySQL, Oracle, PostgreSQL
and SQLite on Linux.

ODBC is a client-server system, and we have happily connected to a DBMS running on
a Unix server from a Windows client, and vice versa.

On Windows ODBC support is part of the OS. On Unix/Linux you will need an
ODBC Driver Manager such as unixODBC (http://www.unixODBC.org) or iOBDC
(http://www.iODBC.org: this is pre-installed in Mac OS X) and an installed driver for
your database system.

Windows provides drivers not just for DBMSs but also for Excel (‘.xls’) spreadsheets,
DBase (‘.dbf’) files and even text files. (The named applications do not need to be installed.
Which file formats are supported depends on the the versions of the drivers.) There are
versions for Excel and Access 2007/2010 (go to http://download.microsoft.com, and
search for ‘Office ODBC’, which will lead to ‘AccessDatabaseEngine.exe’), the ‘2007 Office
System Driver’ (the latter has a version for 64-bit Windows, and that will also read earlier
versions).

On Mac OS X the Actual Technologies (http://www.actualtechnologies.com/product_
access.php) drivers provide ODBC interfaces to Access databases (including Access
2007/2010) and to Excel spreadsheets (not including Excel 2007/2010).

Many simultaneous connections are possible. A connection is opened by a call to
odbcConnect or odbcDriverConnect (which on the Windows GUI allows a database to
be selected via dialog boxes) which returns a handle used for subsequent access to the data-
base. Printing a connection will provide some details of the ODBC connection, and calling
odbcGetInfo will give details on the client and server.

A connection is closed by a call to close or odbcClose, and also (with a warning) when
not R object refers to it and at the end of an R session.

Details of the tables on a connection can be found using sqlTables.

http://www.unixODBC.org
http://www.iODBC.org
http://download.microsoft.com
http://www.actualtechnologies.com/product_access.php
http://www.actualtechnologies.com/product_access.php
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Function sqlSave copies an R data frame to a table in the database, and sqlFetch

copies a table in the database to an R data frame.

An SQL query can be sent to the database by a call to sqlQuery. This returns the
result in an R data frame. (sqlCopy sends a query to the database and saves the result as
a table in the database.) A finer level of control is attained by first calling odbcQuery and
then sqlGetResults to fetch the results. The latter can be used within a loop to retrieve
a limited number of rows at a time, as can function sqlFetchMore.

Here is an example using PostgreSQL, for which the ODBC driver maps column and
data frame names to lower case. We use a database testdb we created earlier, and had
the DSN (data source name) set up in ‘~/.odbc.ini’ under unixODBC. Exactly the same
code worked using MyODBC to access a MySQL database under Linux or Windows (where
MySQL also maps names to lowercase). Under Windows, DSNs are set up in the ODBC

applet in the Control Panel (‘Data Sources (ODBC)’ in the ‘Administrative Tools’ section).

> library(RODBC)

## tell it to map names to l/case

> channel <- odbcConnect("testdb", uid="ripley", case="tolower")

## load a data frame into the database

> data(USArrests)

> sqlSave(channel, USArrests, rownames = "state", addPK = TRUE)

> rm(USArrests)

## list the tables in the database

> sqlTables(channel)

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS

1 usarrests TABLE

## list it

> sqlFetch(channel, "USArrests", rownames = "state")

murder assault urbanpop rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

...

## an SQL query, originally on one line

> sqlQuery(channel, "select state, murder from USArrests

where rape > 30 order by murder")

state murder

1 Colorado 7.9

2 Arizona 8.1

3 California 9.0

4 Alaska 10.0

5 New Mexico 11.4

6 Michigan 12.1

7 Nevada 12.2

8 Florida 15.4

## remove the table

> sqlDrop(channel, "USArrests")

## close the connection

> odbcClose(channel)

As a simple example of using ODBC under Windows with a Excel spreadsheet, we can
read from a spreadsheet by

> library(RODBC)

> channel <- odbcConnectExcel("bdr.xls")

## list the spreadsheets

> sqlTables(channel)
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TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

1 C:\\bdr NA Sheet1$ SYSTEM TABLE NA

2 C:\\bdr NA Sheet2$ SYSTEM TABLE NA

3 C:\\bdr NA Sheet3$ SYSTEM TABLE NA

4 C:\\bdr NA Sheet1$Print_Area TABLE NA

## retrieve the contents of sheet 1, by either of

> sh1 <- sqlFetch(channel, "Sheet1")

> sh1 <- sqlQuery(channel, "select * from [Sheet1$]")

Notice that the specification of the table is different from the name returned by sqlTables:
sqlFetch is able to map the differences.
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The increasingly complex research questions addressed by neuroima-

ging research impose substantial demands on computational infra-

structures. These infrastructures need to support management of

massive amounts of data in a way that affords rapid and precise data

analysis, to allow collaborative research, and to achieve these aims

securely and with minimum management overhead. Here we present

an approach that overcomes many current limitations in data analysis

and data sharing. This approach is based on open source database

management systems that support complex data queries as an integral

part of data analysis, flexible data sharing, and parallel and

distributed data processing using cluster computing and Grid

computing resources. We assess the strengths of these approaches as

compared to current frameworks based on storage of binary or text

files. We then describe in detail the implementation of such a system

and provide a concrete description of how it was used to enable a

complex analysis of fMRI time series data.

© 2007 Elsevier Inc. All rights reserved.

Introduction

The development of non-invasive neuroimaging methods, such

as positron emission tomography (PET), and functional magnetic

resonance imaging (fMRI), has produced an explosion of new

findings in human neuroscience. Scientific advancement in this

domain has been the direct result of developments both in

hardware technology for data acquisition and algorithms for data

processing and image analysis. As these analytical approaches

have improved in sensitivity and power, they have made it possible

to address increasingly complex scientific questions. Yet, while the

scientific questions and analysis methods have become more

sophisticated, the computational infrastructures to support this

work have generally not kept pace. In this article, we discuss a

novel computational approach to support analysis of functional

imaging data. The importance of this approach is that it allows

neuroscientists to address more complex questions while con-

comitantly speeding up the rate at which these questions can be

evaluated.

Early neuroimaging research was based on grouping trials of

the same sort into a single presentation sequence in so-called

“block designs”. While these designs enabled researchers to

address certain a priori questions, they left little room for a

posteriori data analysis. More recently, “event-related designs”

(both slow and fast variants) have not only enabled researchers to

evaluate a priori research questions but, importantly, also enabled a

variety of interesting a posteriori analyses that have been of

tremendous value. For example, some researchers have partitioned

the stimuli according to post hoc classifications after data have

been collected, as in a study by Wagner et al. (1998), which

analyzed stimuli as a function of whether they were subsequently

remembered or forgotten. The use of event-related designs has also

opened the way to new statistical analysis methods for estimation

of event-linked hemodynamic responses, and for assessing the

correlation between neural activity and finer features of stimuli

properties.

In light of these advancements, it is noticeable that there has

been substantially less progress in the development of computa-

tional infrastructures supporting the storage, analysis, and sharing

of fMRI data. Although there are significant efforts underway to
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represent and store imaging data for large multi-center studies

(Van Horn et al., 2001), the infrastructures at individual research

centers are often not optimally designed to support everyday

imaging research tasks. Most importantly, the performance of

increasingly complex analyses, such as evaluation of functional

connectivity between brain regions, requires certain computa-

tional tasks that can be cumbersome and even prohibitively

difficult using traditional data representation approaches (i.e.,

hierarchical file systems and matrix representation of images).

Such complex analyses require, for example, repeated averaging

of subsections of time series (TS) data and correlating TS data,

but currently employed frameworks for data storage are ill

equipped for this task. Furthermore, as the complexity of analyses

increases, current approaches to data representation generate

prohibitively large amounts of intermediate data (e.g., “mask”

files) in addition to the final results. This in itself causes serious

management overhead. The immediate result of these weaknesses

is that the computational infrastructure becomes a bottleneck in

the progress of research: it results in slower data analysis,

reduces the number of questions that can be asked of the data,

and makes it difficult to enable concurrent access to the data (for

local and remote users) as is often needed for complex analyses

and collaborative research. Thus, the current computational

demands for imaging research call for a different approach to

storage and analysis of fMRI data. The basic requirements of

such systems are that they store data efficiently, enable rapid

selection of data, and make data easily accessible for both local

and remote users.

In what follows, we present a unified framework for the

analysis, storage and sharing of neuroimaging data that addresses

these needs, using an approach based on the general data

representation and manipulation abilities of database management

systems (DBMSs). While this framework is technical in nature, its

forte is in extending the researcherTs ability to ask more questions

about neuroimaging data and obtain rapid responses to these

questions while employing advanced statistical tools. These

advantages increase the efficiency of a scientific inquiry process

that is often based on being able to ask increasingly refined

questions about data.

A major advantage of the database-centric framework we

present here is that it not only uses DBMSs for storing and sharing

of data, but also takes advantage of DMBS capabilities by making

the database an integral part of the fMRI data analysis workflow.

We review the advantages that this approach offers over the

traditional methods of storing and analyzing data using flat files

(i.e., binary or text files), and show how these directly bear on the

scientific routine and daily research in brain imaging. We

demonstrate the scalability of these methods when coupled with

modern distributed cluster computing (Pfister, 1998) and Grid

computing technologies (Foster, 2005), in which numerous

computers (computing nodes) perform tasks in parallel, and

discuss issues such as efficient data storage, data sharing, data

transparency, and advanced data analysis. Finally, we detail our

implementation of such a system.

Our aim is to introduce such systems to researchers who have

not considered this approach so that they can become acquainted

with both the strengths and limitations of database-oriented

analysis of brain images. We therefore first describe our general

approach rather than the specific details of our implementation (in

section, Relational databases and their application to imaging). We

then present the description of the systemTs actual implementation

(in section, System description). The system is based on open

source software tools (widely available and supported by large

developer communities) and a client–server approach; the data are

stored using a database server, and analyzed by remote client

computers, which request data over the network and analyze the

data using a powerful statistical programming language (R

Development Core Team, 2005; http://www.R-project.org). We

then provide concrete details of one example analysis to

communicate more practical information (in section, Detailed

example: reverse correlation analysis). Specifically, we explain

how this system was employed to conduct an analysis that

exemplifies beneficial aspects of using DBMS in conjunction with

distributed computing to conduct fMRI data analysis. This analysis

is a “reverse correlation” of fluctuations in hemodynamic

responses with specific stimulus properties of naturalistic stimuli.

We trust that these descriptions on both abstract and concrete levels

will allow researchers to consider more diverse and creative

analysis methods and efficient ways for sharing and storing data.

Relational databases and their application to imaging

As scientists wrestle with the exponential growth of their

datasets, the power and utility of the relational database is being

applied with increasing breadth and frequency across a range of

scientific disciplines (Szalay and Gray, 2006). The benefits in

terms of indexability, leveraging of metadata, and scalability of

database approaches over file-based approaches are becoming clear

in a growing number of disciplines (Gray et al., 2005). This trend

can be seen clearly in digital astronomy, where the Sloan Digital

Sky Survey (http://www.sdss.org/) is making an increasing use of

DBMS technology to describe millions of celestial objects, and to

enable searches across that data (Nieto-Santisteban et al., 2005). In

this effort, improved data organization and relational representation

enables database queries, performed in a distributed manner on

Grid resources, to run an order of magnitude faster than a file-

based implementation of the same algorithm operating over file-

based catalogs.

In bioinformatics, the warehousing of file-based data from

both curated public data sources and laboratory experiments into

integrated relational databases affords new methods for search

and analysis. Here, the Genomics Unified Schema (http://www.

gusdb.org; cf., Davidson et al., 2001) provides a fabric for

creating integrated relational databases for functional genomics

data analysis from public data sources and from laboratory

experiments in sequence analysis and proteomics (Stoeckert,

2005).

Researchers using imaging data are already facing similar

challenges. fMRI analyses typically use and generate a vast

number of data files. For example, individual participant data

might include structural images optimized for different tissue

parameters (e.g., T1, T2, FLAIR), diffusion-weighted images

(isotropic and anisotropic), perfusion images, angiograms, surface

representations of volumes, regions of interest, numerous TS (e.g.,

unregistered, registered, detrended, despiked, error terms), various

masks, as well as numerous statistical maps. Group-level statistical

maps might reflect the results of various types of statistical

analyses performed on the individual level data (e.g., analysis of

variance (ANOVA), principal components analysis (PCA), t-tests,

etc.). Together, the number of flat files generated (i.e., linear

unstructured data stored in files and organized in directories) can

become quite large and the entire set is typically complex, difficult
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to manage, and enormous in size. This is particularly so when data

are kept in the form of text files for purposes of certain advanced

analyses. DBMS offers many advantages over flat files in terms of

storage, sharing and analysis, and we discuss some of these in what

follows. Certainly flat file systems allow more rapid sequential

access to data, which under the right circumstances, can result in

faster processing. Yet, this advantage is less important when the

data in the database are analyzed in parallel utilizing high-

performance distributed computing systems.

In DBMSs, data are not stored in separate user-accessible files

but are encoded in a tabular internal representation that reflects

relations among data elements or tables of such elements (how or

where this information is stored is irrelevant to users, and so we

will not address this further). All a user needs to know in order to

access the data is the name of the table storing the data and what

data attributes it holds. For example, a user can request to see all

the information in the subject04 table by issuing a command

(equivalent to): show all information in table subject04. Or, if more

specific information is needed: show all information in table

subject04 where the condition is ‘tone-presented’. DBMSs are

therefore indispensable for querying (i.e., asking subset and

relational questions of) large amounts of data, and in the System

description section we demonstrate how such capabilities can be

utilized for rapid development and execution of sophisticated fMRI

analyses. A number of research projects have utilized databases for

archiving and making available large numbers of imaging datasets

(Kotter, 2001; Van Horn et al., 2001), or the results of statistical

analyses (Fox and Lancaster, 2002). Such large-scale projects,

however, use DBMS to manage large amounts of file data, rather

than to maintain data in a form that facilitates use in outside

analysis routines. They are not aimed at affecting the daily

practices of researchers working on fMRI projects in those stages

of the work where data are still being analyzed (or in some cases,

mined) for certain patterns. Rather, they are intended for archiving,

reanalysis and meta-analysis.

For the individual researcher or a research laboratory, storing

data in a database implies that given proper permissions, the data

could be accessed from any remote computer (whether on the local

network, or over the Internet) obviating the need to save multiple

copies of data at different locations. As a result, sharing data with

remote collaborators is greatly simplified, because servers can

accept requests for data (queries) over computer networks. For

example, two research groups can analyze the same dataset using

different methods of analysis (e.g., ICA vs. contrast analysis).

DBMSs also allow for data filtering on the server side, thus

eliminating unnecessary network traffic. In practice, an analysis

script written at one location can be sent to remote collaborators

and executed from their computers without any modification

whatsoever, since the remote center will access the original data,

and the output of the analysis would be identical across sites

independent of the complexity of the analysis or its subtleties (see

Appendix for example). Furthermore, databases offer a single

point-of-update: updating data on the server will immediately

affect all analyses conducted on those data without the need to send

newer versions of the data to other individuals involved in its

analysis. Given proper coordination (updates should not occur

during data analysis proper), this feature assures that all relevant

parties access the exact same dataset.

Because database systems allow simultaneous access to data

from multiple sources, they lend themselves to distributed

computing of various types. One distributed approach involves

cluster-computing frameworks in which multiple computers

(computing nodes) work in parallel to distribute the processing

of a single computing job (Pfister, 1998). Another approach,

termed Grid computing (Buyya et al., 2005; Foster, 2005; Foster et

al., 2001), is based on more loosely associated computing groups

with intelligent ‘middleware’ software that makes those computers

appear as a single computing resource from the userTs perspective.

In both types of solutions, dozens or even hundreds of computers

perform analysis in parallel, simultaneously accessing the same

dataset (the approach described here was implemented on a

computing cluster that supports Grid computing; functionality that

necessitates Grid computing is highlighted in the text).

While offering the possibility of storing data at a single

location, if needed, DBMSs offer integral replication features

that can speed up analyses and serve as a backup mechanism.

For instance, data stored on a database in a neuroimaging

laboratory can be replicated to a “mirror” database (technically

known as a ‘slave’) at a different laboratory, allowing a remote

collaborator to work on a local copy of the data if needed. This

scenario is particularly useful if the dataset is very large. A large

raw TS dataset can consist of dozens of gigabytes that would

otherwise have to be transferred over the network during each

analysis. In another scenario, the slave database might be set up

on the same network as a computing cluster. In this

configuration, during data analysis the cluster nodes access the

data on the slave database, which is located on the same local

area network as the cluster and is accessible via fast (e.g., fiber

or gigabit) connections (see Fig. 1). This configuration offers

more efficient data access than connecting to the original

database over relatively slower wide-area network connections

(e.g., Internet connections). Replication can also be used to

reduce the workload on a server when multiple machines need

to access the database in parallel, such as when multiple nodes

are processing data simultaneously. For example, 20 nodes can

be configured to query the master database, and 20 others can be

configured to query the slave thus offering the required

scalability for parallel environments. (More sophisticated im-

plementations, such as ‘rolling out’ partial copies of a database

to database engines running on the computing nodes are also

possible.) Finally, slave databases serve as immediately acces-

sible backup systems if the main system becomes inaccessible.

Existing fMRI analysis tools could potentially interface with

DBMS. Current data analysis systems (e.g., AFNI, SPM,

BrainVoyager, FSL) are integrated packages that use flat files to

save data throughout the analysis flow and allow users to invoke

statistical procedures using integrated commands or extensions.

Using a database as a storage ‘backend’ in these systems would

allow users to access data via database queries (rather than from a

file) thus benefiting from DBMS features described above, while

still retaining a familiar working environment. In addition, many

software systems and programming language (e.g., Matlab, Excel,

Perl, Python, C) can currently interface with relational databases,

which allows for parallelized data processing by users others than

those who had collected the data.

Effective and easy documentation of data structures is a natural

byproduct of data representation in DBMS. Relational databases

can easily be used to serve metadata such as the names of the tables

in the database, the columns (attributes) that exist in each table, and

the type of data stored in each column. This feature makes it easy

to document the structure of the database and facilitates more

effective sharing of information with others. We now turn to
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describe the specific details of the neuroimaging data analysis

system we have implemented.

System description

General

The system we have implemented is based on an architecture

similar to that in the framework described above, in which

distributed clients pull data from a central server, and work

independently and simultaneously to conduct a voxel-based

analysis (volume domain), a node or vertex-based analysis

(surface-mapping domain; e.g., Argall et al., 2005), or a region-

based analysis. In what follows we refer to voxels as a default,

unless specifically referring to analyses conducted in the surface

domain. The server maintains a relational database that stores the

data that are to be analyzed as well as information about that data,

e.g., the assignment of nodes to anatomical regions of interest

(henceforth ROIs). The clients that conduct the data analysis are

compatible with all major operating systems (e.g., Microsoft

Windows, UNIX variants or Apple Mac OSX).

Server

Data representation

In our implementation, each experiment is assigned a single

database, and each database can contain a varying number of data

tables. The guiding principle in designing such databases is to

separate the fMRI data tables that store functional data for volume

voxels or surface vertices (e.g., BOLD data) from the tables that

hold descriptive information about these voxels or vertices.

The fMRI data for each individual participant are stored in a

table (or tables) that holds all data for that participant, i.e., for all

voxels (in the volume domain) or nodes/vertices (in the surface

domain), for all conditions.1 If the data are signal estimates from a

statistical analysis, such tables will have [N(voxels) ⁎ M(condi-

tions)] cells. If the data are the raw TS, the table will have [N

(voxels) ⁎ M(time points)] cells. For example, in an experiment

with two conditions, where each hemisphere is represented as a flat

surface map consisting of 196,000 vertices, data would be stored in

a table with 196,000 rows, and two columns.

Theoretical descriptions (classifications) of the data that are used

for filtering and selection purposes during analysis are stored in

different tables in the database (see Fig. 2). These tables are used to

classify voxels or surface nodes according to criteria that are of

theoretical interest. For example, one such table could associate each

voxel with an anatomical brain region. Such a table would contain

two columns: one for the voxel number and one for the brain region

descriptor (label or number). In this case, the classification can

record as many values as needed in the researcherTs anatomical

parcellation system. Tables can also record whether a voxel is part of

1 We use the term “fMRI data” to refer to two types of data. One is the

actual TS data, i.e., the sequences of signals from a single voxel that are

measured over the entire course of an experimental run. These data are

typically mean normalized and analyzed by regression models. The second

type of data is the signal estimates that are the result of statistical analyses

(e.g., beta values estimated from regression or deconvolution analyses).

Fig. 1. Sharing and analyzing data using databases. fMRI data collected at one center (the Data Source) are stored on a Master database, and are replicated to a

collaborator, as well as to a 100-node computing cluster. Collaborators can either analyze the data locally, or query data from the master database. The computing

cluster holds two copies of the data using two separate DBMS servers, to serve 100 clients simultaneously.
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a region that has certain functional properties, e.g., whether it is

implicated in emotional processing as determined by an independent

“localizer” task, whether its intensity passes a certain reliability

criterion, whether it was found active in a certain previous study, or

any other classification that is of interest to the researcher (Fig. 2).

Note that some of these filters may be linked to specific

participants whereas others are not. For example, due to differences

in brain structure, assignment of voxels to their anatomical regions

will often be performed on an individual basis so that the relation

between voxels and anatomical labels would be unique for each

participant (e.g., as established via automatic parcellation: Desikan

et al., 2006; Fischl et al., 1999). By contrast, classifying voxels

according to whether or not they were active in a previous

experiment on a group level would be represented in one table that

would be applicable to all participants in the study. Finally, some

classifications, such as whether a voxel demonstrated reliable

intensity in a given condition, could be described on the group or

individual participant level. This decision depends on whether a

researcher wants to select voxels active at the group level, or those

active for each participant on an individual basis (even though

these are likely different voxels). In the latter case it would be

necessary to identify separately for each participant which voxels

were active in each experimental condition.

Once the descriptor tables have been constructed, researchers

can rapidly select data according to highly specific criteria that

implement one or more constraints in any logical combination. For

the database in Fig. 2, it is trivial to select voxels that meet criteria

such as being in the left inferior frontal gyrus, having a t-value that

is greater than a certain criteria in one or more experimental

conditions, or having been classified as active in a prior study.

Because relational databases are designed to resolve such complex

queries, it is straightforward to combine any such criteria in a query.

Consider the following query that can be constructed using a single

statement to extract voxel data for a focused analysis: for each

participant, extract data of voxels in the left superior temporal gyrus

that are part of an active cluster at group level in the audio

condition, or had a reliable t-value in that condition at the

individual-participant level. This sort of query may be particularly

useful when trying to establish regularities at the group level while

at the same time accounting for inter-individual differences that

exist in the location of activation peaks (cf. Patterson et al., 2002).

Server implementation

The database server software that we use is the MySQL

database engine, which is freely available on the Web (http://www.

mysql.com/), and can be installed on UNIX variants, AppleTs Mac

OSX platform or Microsoft Windows. This database system has

extensive documentation, use publications, and graphical interface

management tools that allow it to be rapidly mastered by non-

specialists. Tables can be created via graphical interfaces or

command line tools, and loaded from text files. The database

supports the Structured Query Language (SQL; Eisenberg et al.,

2004) that is used to specify what information is to be pulled from

the database. Access to the database is typically achieved via

Internet protocols, so that remote data can be accessed given proper

security permissions, but for development purposes, a command

line mode is also available. In our work, each experiment is

assigned a unique database — a collection of data tables that

contain both functional data and theoretical classifications of those

data as described above. The database can also function as a job

dispatch manager and manage the parallelization of jobs to the

computing nodes (see Appendix). This makes it possible to run one

script repeatedly, while assuring that each instance of the script is

initialized with different runtime operation parameters.

Fig. 2. Example of database scheme for storing data from an fMRI experiment. Each titled table reflects a table in the database and the information it maintains.

Separate tables store the time series data and signal estimates (green). The database returns the data of voxels satisfying a certain criteria. If no criteria are

specified, the data for all voxels are returned. Criteria are specified as constraints based on the filter tables (orange). Some filters are linked to individual

participants (single-participant filters) whereas others are linked to the entire group of participants in the experiment (group-level filters).
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Database security and controlled collaboration

Security policies on DBMS control what operations each user

can perform on the data. Because the database is accessible over

the network, a userTs account consists of both a user name (to

which a password is assigned) and a collection of hosts (i.e.,

terminals) from which that user can access the database. This

combination assures that certain users will be able to access the

database from any host, given that a password is provided, whereas

others will be able to access it only from certain hosts.

Different users or groups of users can be given different rights to

the data, and this is the typical approach for an fMRI study. The

researcher who collected the data will likely receive all permissions

to the database and remote colleagues will likely be granted more

limited privileges. For example, such users should not be able to

delete tables from the database, or to change their structure.

Because databases are designed with data sharing as a design

principle, DBMS offers a powerful and flexible permission

scheme. In MySQL, the privileges granted to an account can

apply to an entire database, specific tables in the database, or even

specific columns in a table. Certain users could view data in all

tables in the database, whereas others could be limited to a few

tables. The most basic procedures for which security would be

implemented include rights to select (i.e., access) data, update data,

or delete data. In many research laboratories, such security is

mandated to protect the identity of subjects or patients.

Databases also offer flexible mechanisms for separating

between data that are to be shared and those that are not. For

various reasons, researchers are very careful with the portions of

the data they share with others (cf. Ascoli, 2006), and managing

the sharing of neuroimaging data is a nontrivial problem (e.g.,

Smith et al., 2004). To illustrate, a researcher might want to store

the data of 50 participants in a database table for purposes of his or

her own analyses but share only those data belonging to the subset

of participants (e.g., 20 participants) whose data have been

published. In a database, this is easily enabled by creating a

“virtual table” (technically called a “view”) that is in itself a result

of a query, but that appears as a table when querying the database.

In this case, the view named “limited.20ss.table” would be the

result of a query selecting all data belonging to the relevant 20

participants. Other users will interact with this view as if it were a

table and analyze it according to their interest (e.g., ‘select all data

from limited.20ss.table where condition1.tvalueN4’). Views make

it possible to share data without needing to make additional

custom-tailored copies of the data to suit different types of sharing.

Also, when data in the primary tables are updated, these changes

are immediately seen in the views (see, Gray et al. (2005), for

advantages of views in the context of scientific research).

Standards, conventions, and local practices

Given that the type of system described here is aimed at

individual researchers or research laboratories, local practices will

ultimately determine the structure of databases and table-naming

conventions, and the nature of the metadata maintained. Though

adopting a common standard aids in data sharing, in a system of the

order we are describing, sharing is carried out on a peer-to-peer

level (i.e., by having research centers establish direct contact),

rather than via a central data warehouse that holds numerous

datasets.

The development of general representation schemes that can

accommodate different types of fMRI analyses and their associated

data types is a matter of ongoing research (e.g., OntoNeuroBase,

Temal et al., 2006). Intensive work has also been conducted by the

BIRN project (http://www.nbirn.net) to develop a logical model for

documenting results of statistical analyses using XML (Keator et

al., 2006). This model provides a framework for storing metadata

about functional scans, functional data, and various annotations.

However, it is a non-trivial task to establish a domain ontology for

neuroimaging that would be readily adopted by a large number of

research laboratories and aid data interoperability. On the theo-

retical level, one would need to establish a set of data types and

characterize how these types relate to each other. Even then, it is

unclear whether in practice such a general scheme would be adop-

ted by researchers; e.g., different research centers would need to

agree on a common nomenclature for naming cortical regions,

possibly within a larger context of a hierarchy of brain structures

(e.g., NeuroNames, Bowden and Martin, 1995). In the absence of

such agreements, any such implementation would need to incor-

porate flexibility, such as accommodating multiple anatomical

labelings for the same data (cf. Keator et al., 2006, for such an

implementation).

In reality, the description of the data in many centers is likely to

be quite idiosyncratic and even project-specific. What is important

is that the database structure be accurately described, and that this

description be publicly available. Once the analysis is completed

and the data submitted to a central repository (e.g., fMRIDC),

standard metadata conventions could be applied to the data (see,

e.g., Gardner et al. (2003), for standards in central and peer-to-peer

repositories).

Rather than developing a general storage scheme, during our

2.5-year experience with DBMS-driven analysis of fMRI data we

instead opted to construct database schemes for different usage

cases. Some schemes, as the one described in the Data representation

section and Fig. 2, are quite detailed. Other schemes, supporting

relatively simple analyses, contain only two tables. For example, a

database set up to support analysis of a block-design experiment

with three conditions (analyzed in the surface domain) would have

the following fields in each table, where each field corresponds to a

column in the table:

table 1 (individual participant data): hemisphere, participant_id [1…

n], node_id [1 … 196,000], cond1_beta [signal estimate in

condition1], cond2_beta, cond3_beta.

table 2 (group level descriptor): node_id, roi_id [anatomical region

in common space], reliable_cond1 [reliable by FDR on

group level, y/n], reliable_cond2, reliable_cond3.

A conceptually similar study using an event-related design

would have a similar table structure, except that instead of one

signal estimate per each condition, the table would store the data

for the estimated impulse response function (IRF) in each

condition; e.g., if the IRF is estimated by 7 data points, these

would be stored as cond1_tr1beta … cond1_tr7beta, and so on.

If the study were extended to include two groups of participants

presented with the same stimuli under different task instructions

(that is, in two separate experiments), a between-participant factor

(task) would be coded in an additional column in tables 1 and 2, as

follows:

table 1 (individual participant data): task, hemisphere, participant_

id, node_id, cond1_beta, cond2_beta, cond3_beta.

table 2 (group level descriptor): task, node_id, roi_id, reliable_

cond1, reliable_cond2, reliable_cond3.
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This last example illustrates how data frommultiple experiments

can be stored in the same table or database when such a scheme is

useful for answering the theoretical question at hand. Schemes for

TS analyses can also be developed, and we detail a few in the

section, Detailed example: reverse correlation analysis.

Data from separate databases can be cross-referenced or joined

in a single query, if those separate databases reside on the same

server. This makes it possible to extract data from one study on the

basis of results derived in another study. To illustrate, signal

estimates could be selected only for voxels that were reliable in a

certain condition in a prior study (certain commercial DBMS, e.g.,

MS SQL Server, also enable queries that access databases residing

on different servers). This also makes it possible to create on the fly

(via SQL queries) newly ‘joined’ tables from data collected in two

different experiments.

The example cases we have discussed above were rapidly

implemented by individuals at the graduate- and undergraduate-

student level, with minimal oversight by more experienced users.

These use cases show that while each study may dictate its own

table organization, some general principles are emerging, such as

the separation of data themselves from the descriptors of the data,

which allows filtering of data from one experiment on the basis of

constraints from another. Implementing similar systems in research

centers would likely involve a similar process, in which experience

with the system will lead to commonalities in schema design and

the emergence of ‘prototypical’ schemes.

Data storage requirements

The data storage requirements associated with storing fMRI data

in DBMS depend on a number of factors, including the number of

participants, and the types of data being stored (statistical estimates

such as beta coefficients, and/or entire TSs). Here we report the

storage requirements for two types of example datasets when stored

in a database vs. when stored in imaging file formats. The first

dataset consists of signal estimates in three experimental conditions

for each voxel in the volume domain (73,000 voxels per each

participant). The second consists of TS data (1620 acquisitions) for

each vertex in the surface domain (196,000 surface vertices per

hemisphere, per participant, making for more than 3×108 data

points per participant).

The first dataset required ∼37 MB when stored in the database

(the database included indexes on two columns for faster data

selection, which slightly increase its size). On the traditional

hierarchical file system, it required ∼3.5 MB when stored in a

compressed binary format (BRIK.gz), or ∼10 MB when stored in a

non-compressed binary format (BRIK). In both the database and

the BRIK files, the data were stored as a floating-point numeric

type with precision of five decimal places. The command line

utilities we routinely use are part of the AFNI suite and can

perform voxel-based analysis on compressed BRIK.gz files thus

benefiting from the smaller storage requirements.

The second dataset contained surface vertex data and consisted

of several large TS files, one per each participantTs hemisphere,

each stored as a separate table. Each file required ∼3600 MB

when stored in its typical form, which is as a text file (in AFNI,

surface-based analyses take text files as input rather than binary

files). Each corresponding database table was ∼1250 MB in size

(with an index on one of the columns) when stored in the

database.

When considering storage requirements, it is important to note

the following: first, databases offer compression options, and in

MySQL, such compression achieves between 40 and 70% reduction

in data size, but entails making a table read only. The data sizes we

report above are for uncompressed data. Second, storing data in

compressed formats can be associated with increased processing

time during data access because of the requisite decompression and

recompression. Working with compressed files (e.g., BRIK.gz) via

a graphical interface (e.g., the AFNI interface) can also be

associated with reduced responsiveness of the interface (see

http://afni.nimh.nih.gov/pub/dist/src/README.compression).

Thus, implementing compression in either file-based or database

environments should be carefully considered depending on the

particular demands of each project. For instance, projects whose

analysis has ended are good candidates for compression.

Interfaces with imaging workflow

The workflow of a typical imaging analysis consists of a large

number of processing stages, often beginning from reconstructing

data from k-space files, and culminating in thresholding. Our work

to date has mainly utilized DBMS capabilities for one part of this

workflow; namely, group analyses of the sort described in the prior

sections. Here we consider other potential interfaces between

DBMS and typical stages in imaging analysis (we follow a typical

processing workflow as outlined by Smith, 2002).

The initial stages of image analysis typically involve reconstruc-

tion of k-space data into functional TS runs. These TS data often

undergo a number of transformations before they are analyzed

statistically (e.g., alignment, temporal and spatial smoothing, mean

adjustment etc.). Because the TS is only analyzed statistically after

these steps are completed, there is no strong reason to keep the

intermediate data representations in a database as these are rarely

needed following preprocessing. They can be stored offline (e.g., on

backup tape), or in so-called ‘near-line’ solutions such as relatively

slow network-mounted storage repositories.

Whether or not the final TS will be stored in a database depends

on the research question. Storing the TS in the database affords

convenient execution of sophisticated analyses of TS data such as

structural equation modeling (cf., Skipper et al., 2007a, for an

example use), and flexible selection of TS subsets on the basis of

categorizations of those data (as discussed in the section, An

alternative data representation scheme). Yet, oftentimes TS data are

not the domain of inquiry per se, but are only used for establishing

the relative sensitivity of each voxel/vertex to each experimental

condition, using standard regression based approaches. Here, there

is no strong rationale for storing the entire TS data in a database,

but there is good reason to store the signal estimates in each voxel

for each experimental condition, as these are the basis for the

subsequent second-level group analysis. In any case, the voxelsT

coordinates can be stored alongside the statistical values (in the

future, this could potentially allow existing command line utilities

to interface with database-stored data in the same way they

currently operate on flat files).

Importing data from the file representation into the database

entails creating a table, and populating it with data from a text file.

The following two MySQL commands create a table with three

columns, reflecting the assignment of anatomical regions of

interest (ROIs) to voxels for each subject, and load data into that

table from a text file (vox2roi.txt):

create table vox2roi (subject int, voxels int, roi int);

load data local infile ‘vox2roi.txt’ into table vox2roi fields

terminated by ‘ ’;
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Database queries can be performed more quickly if the fields

(columns) by which data are typically selected have associated

‘indexes’. In this example, it is expected that users would want to

select nodes on the basis of some a priori ROI classification; in this

case, faster data selection could be achieved if the table is created

with an index on the ROI column:

create table vox2roi (subject int, voxels int, roi int, index (roi)).

Once individual data have been registered to common space

and stored in the database, group-level analyses of various types

can be performed, and the results of such analyses can be stored in

the DBMS in the form of information about each voxel.

After group-level statistics have been established for each voxel

or surface vertex, they are typically followed by mathematically

motivated thresholding procedures. Thresholding controls for the

family-wise error (FWE) associated with the multiple statistical

tests performed on the data, and with the fact that the data are not

independent due to spatial filtering. Spatial filtering is often

explicitly introduced in the workflow to increase signal to noise but

is also introduced implicitly during any number of spatial

transformations of the data, e.g., motion correction, alignment to

common space, or volume-to-surface mappings. Some threshold-

ing methods such as random field theory (Worsley et al., 1996) or

Monte Carlo simulations of active cluster extent (Forman et al.,

1995) estimate the smoothing in the dataset in each axis (i.e., the

smoothing kernel specified in terms of full-width half maximum,

FWHM), and use this estimate in simulations that establish voxel-

or cluster-level thresholds. Currently, these utilities do not operate

on database-stored data, and so the estimation of the smoothing

kernel and the subsequent clustering could only be performed once

the group level results have been converted to a compatible file

format. Other thresholding methods, such as those based on

permutations (e.g., Nichols and Holmes, 2002) or on false-

discovery rate (e.g., Genovese et al., 2002) do not rely on pre-

assessment of FWHM. Assessment of FDR is currently available

as an “R” package, and permutation methods are easily

implemented, and benefit from the capabilities of distributed

computing (see Stef-Praun et al., 2007).2

Given the importance of being able to visually assess and report

the results of imaging analyses (whether in 3D space or cortical

surfaces) it is important to know how the results of analyses such

as the ones reported here can be graphically displayed. While “R”

has graphical output functions, these are quite generic and not

customized for the complex display of brain imaging data that

often involves visualization of anatomical data and functional

overlays. It is also reasonable to assume that researchers would

want to display the results of their group- or individual-level

analyses in the same space (and interface) from which the input

data originated. In some circumstances, the analysis results can be

saved and immediately loaded into the graphical interface (e.g., the

SUMA software can load single column text files representing

whole-brain activity and display this information directly on a

cortical surface image). In other cases, the results of the analyses

must be imported to a native file format (e.g., using AFNITs

3dUndump). There are also two “R” packages specifically aimed at

fMRI analysis that can be used to load, save and graphically

display anatomical and functional data stored in ANALYZE and

AFNI file formats (Marchini, 2002; Polzehl and Tabelow, in press).

While we have not used these packages in our data analysis

workflow, they offer the future prospect of being able to analyze

data in a distributed manner and plot the results from within “R”.

Clients

In the simplest implementation, both the client and the server

can be installed and run on the same machine, whether for

purposes of testing or actual data analysis. However, to make full

use of the distributed processing capabilities, client software is

usually run on a number of computers separate from the host

running the database. The client sends a query to the database and

receives in return a table (i.e., the set of rows) that satisfies the

query (see Appendix for instructions on how to download and

invoke an example “R” script that demonstrates this functionality).

Client implementation

In our approach, clients are implemented in the statistical

language “R” (http://www.r-project.org), a free, publicly licensed

statistical environment similar to the commercial software S/S+

(http://www.insightful.com). “R” is compatible with Microsoft

Windows and various UNIX based platforms such as Linux or Mac

OSX. Similar to other mathematical programming languages,

scripts written in the “R” language can access and query relational

databases via standard database protocols using SQL.

A simple data analysis script for a cross-participant contrast

between two conditions might consist of a small number of steps,

e.g.:

(1) Retrieve data from the database for a certain range of voxels

(e.g., voxels numbered 1–100) [SQL Query].

(2) From the returned data, select the data for the voxel #1

[Internal R array].

(3) Conduct a statistical test on the data in that voxel (ANOVA,

paired sample t-test) [Internal R procedure].

(4) Store the result in a temporary array; select the next voxel

(step 2) [Internal R procedure].

(5) Upon finishing, write the result array to a file [Internal R

procedure] or to the database [SQL Query].

The ability to analyze a large number of spatial units also makes

DBMS-based approaches applicable to domains such as voxel-

based morphometry (Ashburner and Friston, 2000). In such

methods, where data are sampled at a high spatial resolution, the

number of analysis units can exceed 1.5 million (given in-plane

resolutions of 1×1 mm or better).

One advantage of using “R” for data analysis is that the retrieved

data are directly accessible for examination and manipulation. “R”

provides over 600 distinct packages for analyzing and plotting

statistical data, covering domains such as Bayesian, multivariate and

TS analysis, PCA, ICA, and nonparametric methods. (See the “R”

reference manual: http://cran.r-project.org/doc/manuals/fullrefman.

pdf.) Using these packages we have implemented analyses of fMRI

data including (a) standard analysis of variance (ANOVA), (b)

2 All the thresholding methods mentioned account for spatial smoothing

(blurring) in the data. In certain cases, it could be important to spatially

filter the data with different smoothing kernels and apply the same analysis

to the resulting datasets. In such cases, DBMS offers a convenient way to

store multiple versions of individual-level data smoothed with different

kernels. These sorts of analyses could be important when it is known that a

large smoothing kernel reduces sensitivity to finding activity in certain

anatomical regions (Buchsbaum et al., 2005).
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clustering of voxels on the basis of Beta values, (c) tests of whether

the hemodynamic response peaks at different time points under

different experimental conditions, (d) correlations between hemo-

dynamic response functions in different experimental conditions, (e)

post hoc contrasts, (f) analyses of functional connectivity, (g)

generation of data for permutation tests, (h) voxel-wise correlations

between voxel intensities and behavioral data, and (i) reverse

correlation methods (see section, Detailed example: reverse

correlation analysis).

Client’s suitability for distributed computing environments

The availability of multiple computing nodes holds the promise

of speeding up fMRI data analysis by distributing the computational

load. For some analytical procedures, such a speed-up is virtually a

necessity due to their intensive computational demands. Randomi-

zation methods in statistics represent a classic example of

combinatorial explosion, and in fMRI analysis, such a procedure

is the basis of statistical analyses using permutation tests (e.g.,

Bullmore et al., 1999; Nichols and Holmes, 2002), in which new

datasets are created to assess whether an experimental dataset has

characteristics that differ from those found by chance. In such cases

the bulk of the analysis is in generating the permutations and per-

forming clustering on each permutation, rather than in running the

statistical test itself, making this task optimal for distributed

computing. We have shown (Stef-Praun et al., 2007) how

permutation-based statistical analysis of fMRI data can be sped

up using Grid computing technologies in which multiple computing

clusters parallelize both the generation and clustering of permutated

datasets.

Client–server based systems are particularly well suited for

parallel computing, as the clients are independent of each other,

and exploit the availability of computing cycles by breaking up

large analysis jobs into smaller jobs and running those jobs

simultaneously (parallelizing a single job onto multiple proces-

sors can also be implemented, but this issue is outside the current

scope; see Li and Rossini, 2001, for more discussion). However,

achieving distributed analysis using multiple clients does not

necessitate having access to a computing cluster or Grid facilities.

At small scales, it is feasible to launch a number of “R”

processes on computers in a local laboratory to attain similar

functionality.

Detailed example: reverse correlation analysis

Here we present a detailed implementation (by JIS) of a reverse

correlation analysis using the system described above. Reverse

correlation is an objective method for associating properties of a

stimulus with fluctuations in a TS, in this case with regional

fluctuations in the blood oxygenation level-dependent (BOLD)

response. In this specific implementation, the database is queried

for nodes in given anatomical regions in which activity exceeds a

set threshold, and the TS of these nodes is returned from the

database for further analysis. The analysis requires that the

parcellation of each individualTs cortical anatomy into regions has

been completed such that each nodeTs data in the database is

associated with a symbol (a number) that uniquely identifies an

anatomical region. The number of values comprising the TS

corresponds to the number of functional brain acquisitions in the

study. Within each region, the TSs from the returned nodes are

averaged into a single “mean” TS for that region. The fluctuations

in the TS are then examined with respect to the timeline of the

stimuli presented in the experiment to evaluate which properties of

the stimuli correlate with the signal fluctuations.

Background

We have shown that the ventral premotor cortex (PMv) plays a

role in using observable mouth movements to aid speech perception

(Skipper et al., 2007b). The analysis described here examined the

impact of observable hand movements on comprehension (detailed

results will be reported elsewhere). Participants listened to stories

(AesopTs Fables) when a storyteller was either not visible, visible

but made no gestures, visible and made meaningful gestures

associated with the stories, or visible but made non-meaningful

self-adaptive hand movements (e.g., scratching or adjusting

clothing). The present analyses tested hypotheses about the effect

of hand movements on PMv activity (Skipper et al., 2006). Peaks in

the BOLD TS from PMv were predicted to correspond to

meaningful gestures when the gestures were visually related to

the story content. In contrast, peaks in the TS from PMv were not

predicted to correspond to non-meaningful hand movements in

these stories. Finally, it was predicted that hand movements would

not correspond to peaks in primary auditory and visual cortices.

Data processing steps prior to database import

Preprocessing stages were conducted prior to loading the data

into the database and included: (a) inflating anatomical volumes to a

surface representation and aligning them to a template of average

curvature using FreeSurfer (Dale et al., 1999; Fischl et al., 1999);

(b) automatically parcellating the surface of each participant into

anatomical regions using FreeSurfer (Fischl et al., 2004); (c)

importing the resulting parcellation into the SUMA software

package (Saad et al., 2004); and (d) warping the resulting data to a

standard mesh (Argall et al., 2005). Following these steps, all

subsequent data analyses were performed on the nodes in the

surface domain rather than voxels in the volume domain.

We mapped two types of data from the volume domain to the

surface representation (cf. Saad et al., 2004, for details of mapping

procedure). These data were: (1) each participantTs TS for each

voxel (i.e., the signal intensity in a single voxel over time, sampled

at each functional image acquisition) and (2) the statistics derived

from regression analyses performed on the individual participant

data. These latter statistics were obtained by regressing waveforms

of the predicted hemodynamic response in each experimental

condition against the TS data, thereby establishing the sensitivity

of each voxel to each experimental condition. Preprocessing of the

raw TS consisted of removing artifactual spikes, removing linear

and quadratic trends, and mean normalization. After interpolation

to the surface, these two types of data for each hemisphere, for

each participant, were imported into separate tables in the database

as described in the following section.

Structure of the database

Given the typical way neuroimaging data are organized within

file systems, it is simple to organize data tables in a DBMS so that

their structure corresponds to this organization. While creating such

analogous structures may not be the optimal configuration for a

database schema (as we will discuss subsequently) it is functional

and transparent, facilitating use by researchers with relatively little

database experience. This was the approach taken here, in the first
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database schema design effort by one of the authors (JIS) with

extensive experience in file-based fMRI analysis. The database

Gesture was created in MySQL. This database contained 77 tables

(five for each of the 15 participants and two global tables).

Specifically, for each of the 15 participants, two tables were

associated with each hemisphere: one for the analyzed functional

data (beta coefficients) and one for the raw TS data, and the fifth

table identified the region associated with each node. Two additional

tables contained information relevant to entire group, and stored the

baseline values for each participant and which experimental

condition was associated with each functional volume acquisition.

Analysis procedures

“R” was used to carry out the reverse correlation analysis on a

computing cluster, utilizing up to 80 computing nodes at a time. The

first part of the procedure established representative TSs for the

regions of interest (for each condition) and the second part of the

procedure performed the reversed correlation analysis. Each

computing node was assigned a group of ROIs for analysis (for

exploratory purposes, 84 anatomical ROIs were examined in total).

The core parallel computation process consisted of repeated

database queries that selected, for each participant, the TS of voxels

that were reliably active in at least one of the four experimental

conditions (T=3.32, pb0.001). This query was performed for each

participant, for each anatomical ROI, in both the left and right

hemispheres (given that there were 15 participants and 84 ROIs in

each of the two hemispheres, the query was run 2520 times). A

specific instantiation of a query (in pseudocode) would be:

select all_timeseries_data from particpant1_leftHemisphere

Data for surface nodes that are (a) part of ROI_82 and (b)

have a t-value greater than 3.321 in at least one of the four

experimental conditions.

Note that this query returns information from the table

containing participant 1Ts left hemisphere TS data (particpant1_

leftHemisphereData) on the basis of constraints from two different

tables: the table assigning nodes to ROIs, and the table storing for

each node the T-valued for the four experimental conditions.

The returned TS data were partitioned (binned) by condition,

generating a TS for each of the four conditions. For each such TS,

time points with extreme values (signal changeN10%) were

replaced with the median signal value. For each participant the TS

was normalized against the baseline estimation for that participant.

Then a mean TS was established for the entire group by averaging

over participants. The resulting TSs reflected activity in an ROI

during each condition.

Finally, for each TS we automatically identified local maxima

and minima in the fluctuating signal and correlated them against

the properties of the stimuli presented on the screen (Fig. 3). The

TSs were first decomposed by placing gamma functions of variable

heights and widths with similarity to the shape of the hemody-

namic response at maxima in the TS (grey curves in Fig. 3) as

determined by the second derivative of the TS (Rundell, 1990).

Half of the full width half maximum (FWHM/2) of the gamma

functions determined which of the aligned stimulus attributes were

associated with maxima in the hemodynamic response. The

distance between the FWHM/2 of two temporally adjacent gamma

functions determined which stimulus attributes were associated

with minima in the response.

Results and discussion

We found that in PMv, meaningful gestures resulted in peaks in

the TS when those gestures described the content of the stories, and

valleys in the TS when the hands were still (Fig. 3A). But, this

relationship did not hold for non-meaningful gestures (Fig. 3B).

Furthermore, gestures were not associated with peaks in primary

auditory or early visual cortex, indicating that the PMv responded

to the linguistic meaning and the semantic content in the gestures

rather than to lower level acoustic or visual properties of the

stimuli. The analysis above was implemented in a distributed

manner on a local cluster of 128 nodes (256 processors), in which

Fig. 3. Results of a reverse correlation analysis performed using a database and Grid computing. Orange lines are the hemodynamic response in the ventral

premotor cortex during (A) the gesture condition and (B) the self-adaptor gesture condition, in which gestures were uninformative with respect to story content.

Grey lines are the gamma functions fit to each maxima in the response. These were used to objectively determine which stimulus aspects produce maxima and

minima (see text). Blue arrowed lines point to maxima while black arrowed lines point to minima. Meaningful gestures were far more likely to occur at maxima in

the response than in minima, whereas non-meaningful self-adapting hand movements are as likely to occur at maxima as minima.
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each cluster node was assigned ROIs for analysis, and the analysis

utilized up to 80 computing nodes simultaneously.3 The speed up

afforded by partitioning the job enabled allowed us to understand

the results more quickly and consider and devise new questions

and hypotheses.

An alternative data representation scheme

The database structure outlined in the section Structure of the

database includes many tables because each participantTs data were

assigned a set of 5 tables. This scheme may therefore be

impractical for studies involving a large number of subjects. A

more efficient scheme can capture the same data in four tables,

independent of the number of subjects, and affords queries that

have greater or equivalent power (see Fig. 4).

Simple data queries can be performed by using just the upper

two tables in the figure (Vertex_Descript and Readings). These two

tables are sufficient to extract the entire TS of vertices that satisfy

functional or anatomical criteria or both (e.g., select the timeseries_

signal of vertices whose cond1_TvalN5 and whose ROI=5). The

lower two tables in the figure allow more sophisticated queries. The

first table, Participant_TS_Descript, marks the trial-order sequence

received by each participant (e.g., some participants would be

presented with the auditory-alone condition prior to the auditory-

face condition and for others the order was reversed). Each trial-

order assignment sequence is marked by a unique identifier in the

timeseries_descriptor field. The second table, TS_Descript_Spec,

specifies the condition presented at each functional acquisition for

each trial-order sequence, e.g., whether the first acquired image was

associated with the presentation of a meaningful gesture or with a

less related adaptor movement. Using the information in these two

latter tables, it is possible to extract only those points in the TS

associated with a given condition for each vertex or region (e.g., for

vertices in ROI=5, select the data acquired when gestures were

presented).

This type of scheme is particularly useful for analyses of natural

stimuli: for example, we were interested in the types of words or

gestures presented during each acquisition. However, descriptors of

a TS can also include details such as whether a sentence or phrase

has started or ended at a TR or any other descriptor of interest for

which a TS subset should be extracted. Indeed, any dimension of

interest in the stimuli could be coded. For example, in the domain of

vision, one might code the properties of the video frames, such as

the amount of visual change between frames. Each stimulus

dimension could be resampled to the time scale of the imaging

procedure (i.e., the TR was 2 s) and entered into the database as

tables. Alternatively, the TS could be resampled to match the

stimuli. The fMRI TS could then be mined on a voxel or ROI basis

for a relevant stimulus or combination of stimulus dimensions and

their correspondences to local maxima or minima in the TS.

Discussion

The framework we have described here is one that allows both

individual users and larger research centers to store data in a way that

Fig. 4. Example of database schema for storing time series data from an fMRI experiment. The database schema affords selecting the time series of any given set

of voxels on the basis of the voxel's estimated signal intensity or anatomical location. In addition, for each voxel it is possible to select either the entire time

series, or just those time points in the series where specific experimental condition or conditions occurred.

3 The use of multiple nodes could introduce overhead due to the load on

the DBMS. We examined this issue using a representative 10-min group-

level analysis job in which each computing node issued two database

queries per minute (jobs were executed on a computing cluster at the

Argonne National Laboratory, and queried a database at the University of

Chicago). The measurements indicated that the time per job remained

constant whether 5, 10, 20, 30, 40 or 50 jobs were conducted in parallel.

The mean job time per computing node (in seconds+SE) were: 5 jobs: 496

(14); 10 jobs: 460 (12); 20 jobs: 470 (9); 30 jobs: 465 (7); 40 jobs: 479 (8);

50 jobs: 472 (6). Thus, for this representative analysis, use of even 50

computing nodes did not substantially increase overhead.
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can be queried efficiently, from both local and remote sites, and that

affords distributed statistical analysis of those data. Flexible sharing via

‘view’mechanisms and flexible security are also inherent features of the

system. We have provided details of the server and client implementa-

tion, and explained potential interfaces between such DBMS-based

systems and other stages of a typical imaging analysis workflow.

Merging distributed computing resources with DBMS for imaging

analysis

The two technologies at the core of this framework are relational

database management systems that store data, making them

available for remote access, and a distributed computing architecture

(cluster or Grid computing) that is used for parallel distributed data

analysis. Each technology offers its own distinct advantages, but the

strength of the system is in the synergy between the two. DBMS

oriented systems do not necessitate large scale distributed comput-

ing to aid in imaging analysis. Even when used in a non-distributed

setting, the ability to access selected aspects of data from remote

locations that is offered by DBMS (e.g., reanalyzing a certain ROI

data from abroad) is beneficial to everyday work. Similarly,

distributed computing does not ipso facto necessitate DBMS to

enable faster statistical analysis. One could construct a framework in

which large files are analyzed via distributed computing nodes, with

ultimate collation of completed results. One implementation of such

a file-based solution would be to propagate the entire dataset to each

computing node and implement the types of analyses we have

described above using the data selection mechanisms currently

offered by command line procedures in imaging analysis packages,

and efficient use of ‘mask’ files when necessary (e.g., when using

data from other experiments as filtering constraints). Another file-

based implementation would be to select just the data needed for any

given statistical analysis and propagate those data to the computing

nodes in a way that allocates a different part of the dataset to each

computing node. This implementation entails a ‘pre-filtering’ step,

during which a ‘mask’ of the required data is created by applying a

certain filter. In this approach, the requested subset of data is

constructed de novo from various flat files in order to optimize each

analysis (some imaging analysis software contain functions for

optimizing access to large datasets and selecting subsets of the data,

e.g., RUMBATs librumba, http://www.rumba.rutgers.edu/projects.

php). In contrast to such implementations, a DBMSmake it possible

to set up a single arrangement of the data (i.e., a database scheme)

which affords numerous types of queries, while at the same time

serving the client with just the subset of the data that is of interest in

the specific analysis, and does so without touching the rest of the

data. Furthermore, as we have shown, DBMS naturally allows for

data selection over networks (e.g., when conducting concurrent

analysis of the same data by more than one research center). While

specialized file systems can also allow such access, the implementa-

tion of network file systems specifically designed for distributed

computing is non-trivial. Thus, using DBMS in the context of

distributed computing for image analysis affords a relatively easy

way for distributed data analysis. As we have outlined here, file-

based solutions could potentially afford similar features, but to the

best of our knowledge, such schemes have yet to be developed.

Target population

Who would benefit from storing imaging data using DBMS? On

the basis of our experience, two distinct populations could benefit

from such representations. The first are individual researchers for

whom DBMS-based storage enables the execution of multiple

complex analyses on the same dataset and direct and convenient

access to the data. The ability to select highly specific cross sections

of data from remote computers over the Internet is also an ad-

vantage for this target population, and greatly aids in collaboration

and replication. Our experience shows that undergraduates,

graduate students and post-doctoral students (without background

in computer science), as well as technical staff, can rapidly master

the basic syntax of SQL and “R” programming.

The other target population comprises the larger research

centers that would likely use the DBMS-based system in the

context of a distributed computing environment (whether comput-

ing clusters or distributed Grid sites). The framework offers this

population a convenient method for storing and sharing data, as

well as conducting advanced statistical analyses in a distributed

manner. While we have emphasized benefits for analysis of

imaging (fMRI, PET) data, the approach described can be extended

to researchers interested in other types of data. As we have

described, the bulk of database use takes place once those

processing tasks more tightly linked to image analysis per se have

been completed (e.g., filtering, registration, removal of volume

acquisitions associated with artifacts). Thus, the analysis of

database-stored data could potentially be extended to other types

of structural data such as VBM or DTI, once those have been

processed with tools specifically dedicated to those types of data.

Finally, we consider the role of new technologies in generating

new methods of scientific inquiry in the community, and the

likelihood that new target populations would emerge because of

the availability of such systems. For example, the ability to analyze

easily the same dataset and to share analysis code seamlessly

across individuals could foster cooperation between small groups

of individuals that transcends the traditional cooperation methods

that exist today, and that are based on cooperation between

research groups. Thus, one individual could store the data in a

DBMS, and 3–4 colleagues would analyze the dataset in parallel

pursuing specific and diverging theoretical questions.

Summary

The increasingly complex research questions addressed by

fMRI research impose non-trivial demands on computational

infrastructures. Already, these infrastructures need to support

management of massive amounts of data in a way that affords

rapid and precise data selection, to allow collaborative research,

and to do so securely and with minimum management overhead.

Here we have presented one approach to overcoming current

limitations, which is based on freely available (open source)

database management systems that support distributed data

analysis using cluster or Grid computing resources. We have

described how such a system is practically implemented and have

shown via a concrete example the advantages offered by such

systems during the analysis of imaging data. Implementing such

systems in research centers is likely to facilitate cooperation

between research centers and aid researchers in gaining a better

understanding of their data.
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Appendix A

We have made available an “R” script that can be downloaded

and executed locally by individuals interested in evaluating a

system of the sort described in the manuscript. When executed, the

script will connect to an example database we have set up and

conduct some simple queries and statistical analyses. Individuals

considering implementing MySQL and “R” may want to download

the script and make changes to it. The “R” script and instructions

can be found at http://www.fmri.uchicago.edu/db/db.instructs.html.

Running the script requires installing “R” on the local machine

with two packages that enable database access. The website also

contains documentation of the job dispatch mechanism described

in the Server implementation section.

Users with some experience with Mac OS X or UNIX variants

should be able to install R and initialize the script without much

problem, following the instructions included on the web address

above. However, we do not recommend installing the R client with

the database access modules on Microsoft Windows for testing

purposes, because installation of the database access package on

Microsoft Windows may demand compilation of software on a

windows computer (in case the binary package does not install

properly), which is somewhat of a lengthy process and requires

specialized knowledge.
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